Efficiency and robustness in Monte Carlo sampling of 3-D geophysical inversions with Obsidian v0.1.2: Setting up for success

Abstract. The rigorous quantification of uncertainty in geophysical inversions is a challenging problem. Inversions are often ill-posed and the likelihood surface may be multi-modal; properties of any single mode become inadequate uncertainty measures, and sampling methods become inefficient for irregular posteriors or high-dimensional parameter spaces. We explore the influences of different choices made by the practitioner on the efficiency and accuracy of Bayesian geophysical inversion methods that rely on Markov chain Monte Carlo sampling to assess uncertainty using a multi-sensor inversion of the three-dimensional structure and composition of a region in the Cooper Basin of South Australia as a case study. The inversion is performed using an updated version of the Obsidian distributed inversion software. We find that the posterior for this inversion has a complex local covariance structure, hindering the efficiency of adaptive sampling methods that adjust the proposal based on the chain history. Within the context of a parallel-tempered Markov chain Monte Carlo scheme for exploring high-dimensional multi-modal posteriors, a preconditioned Crank–Nicolson proposal outperforms more conventional forms of random walk. Aspects of the problem setup, such as priors on petrophysics and on 3-D geological structure, affect the shape and separation of posterior modes, influencing sampling performance as well as the inversion results. The use of uninformative priors on sensor noise enables optimal weighting among multiple sensors even if noise levels are uncertain.

[1]  J. Chilès,et al.  Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules , 2008 .

[2]  H. Cramér Mathematical Methods of Statistics (PMS-9), Volume 9 , 1946 .

[3]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[4]  Alexander I. J. Forrester,et al.  Engineering design applications of surrogate-assisted optimization techniques , 2014 .

[5]  J. Mockus Bayesian Approach to Global Optimization: Theory and Applications , 1989 .

[6]  Florian Wellmann,et al.  GemPy 1.0: open-source stochastic geological modeling and inversion , 2019, Geoscientific Model Development.

[7]  B. Borchers,et al.  Efficient stochastic estimation of the model resolution matrix diagonal and generalized cross–validation for large geophysical inverse problems , 2011 .

[8]  M. Nabighian,et al.  The historical development of the magnetic method in exploration , 2005 .

[9]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[10]  J. Wellmann,et al.  Structural geologic modeling as an inference problem: A Bayesian perspective , 2016 .

[11]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[12]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[13]  Stan E. Dosso,et al.  Efficient hierarchical trans-dimensional Bayesian inversion of magnetotelluric data , 2018 .

[14]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[15]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[16]  N. Bohr MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[17]  Andreas Fichtner,et al.  The adjoint method in seismology—: II. Applications: traveltimes and sensitivity functionals , 2006 .

[18]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[19]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[20]  F. Horowitz,et al.  Towards incorporating uncertainty of structural data in 3D geological inversion , 2010 .

[21]  Christian P. Robert,et al.  Bayesian computation: a perspective on the current state, and sampling backwards and forwards , 2015, 1502.01148.

[22]  Edwin V. Bonilla,et al.  DISTRIBUTED BAYESIAN GEOPHYSICAL INVERSIONS , 2014 .

[23]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[24]  Malcolm Sambridge,et al.  Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .

[25]  Eric Moulines,et al.  Adaptive parallel tempering algorithm , 2012, 1205.1076.

[26]  João B. C. Silva,et al.  A robust maximum likelihood method for gravity and magnetic interpretation , 1989 .

[27]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[28]  S. Barnett,et al.  Philosophical Transactions of the Royal Society A : Mathematical , 2017 .

[29]  Roland Martin,et al.  Uncertainty reduction through geologically conditioned petrophysical constraints in joint inversion , 2017 .

[30]  H. Durrant-Whyte,et al.  A Bayesian inference tool for geophysical joint inversions , 2016 .

[31]  M. Jessell,et al.  Geodiversity: Exploration of 3D geological model space , 2013 .

[32]  Arthur Gretton,et al.  Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families , 2015, NIPS.

[33]  Christian P. Robert,et al.  Bayesian computation: a summary of the current state, and samples backwards and forwards , 2015, Statistics and Computing.

[34]  Klaus Holliger,et al.  Systematic evaluation of sequential geostatistical resampling within MCMC for posterior sampling of near-surface geophysical inverse problems , 2015 .

[35]  Nicholas E. Timms,et al.  3D structural and stratigraphic model of the Perth Basin, Western Australia: Implications for sub-basin evolution , 2015 .

[36]  C. Lajaunie,et al.  Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation , 1997 .

[37]  Neil D. Lawrence,et al.  Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.

[38]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[39]  M. Nabighian,et al.  Historical development of the gravity method in exploration , 2005 .

[40]  Gregoire Mariethoz,et al.  Merging parallel tempering with sequential geostatistical resampling for improved posterior exploration of high-dimensional subsurface categorical fields , 2016 .

[41]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[42]  A. Elsheikh,et al.  Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach , 2017, Advances in Water Resources.

[43]  M. Jessell Three-dimensional geological modelling of potential-field data , 2001 .

[44]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[45]  Rohitash Chandra,et al.  BayesReef: A Bayesian inference framework for modelling reef growth in response to environmental change and biological dynamics , 2018, Environ. Model. Softw..

[46]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[47]  Andreas Fichtner,et al.  The adjoint method in seismology: I. Theory , 2006 .

[48]  M. Sambridge,et al.  Transdimensional inference in the geosciences , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  M. Jessell,et al.  Drillhole uncertainty propagation for three-dimensional geological modeling using Monte Carlo , 2018, Tectonophysics.

[50]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[51]  Roland Martin,et al.  Impact of uncertain geology in constrained geophysical inversion , 2018, ASEG Extended Abstracts.

[52]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[53]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[54]  M. Sambridge Exploring multidimensional landscapes without a map , 1998 .

[55]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[56]  C. M. Swift,et al.  The application of audio-frequency magnetotellurics (AMT) to mineral exploration , 1973 .

[57]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[58]  Indranil Pan,et al.  Seismic facies analysis using machine learning , 2018, Geophysics.

[59]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[60]  J. Wellmann,et al.  Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models , 2012 .

[61]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[62]  Mark Lindsay,et al.  Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization , 2018 .

[63]  V. K. Gupta,et al.  30. Mineral-Exploration Aspects of Gravity and Aeromagnetic Surveys in the Sudbury-Cobalt Area, Ontario , 1985 .

[64]  A. Malinverno,et al.  Receiver function inversion by trans‐dimensional Monte Carlo sampling , 2010 .

[65]  R. Anand,et al.  A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia , 2010 .

[66]  Ravi Anand,et al.  Mineral exploration and basement mapping in areas of deep transported cover using indicator heavy minerals and paleoredox fronts, Yilgarn Craton, Western Australia , 2016 .

[67]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[68]  Tony Meixner,et al.  In search of hot buried granites: a 3D map of sub-sediment Granitic Bodies in the Cooper Basin Region of Australia, Generated from Inversions of Gravity Data. , 2009 .

[69]  Rohitash Chandra,et al.  BayesLands: A Bayesian inference approach for parameter uncertainty quantification in Badlands , 2018, Comput. Geosci..

[70]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[71]  Mark A. Girolami,et al.  Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems , 2015, J. Comput. Phys..