2,2'-Bipyrimidine as efficient sensitizer of the solid-state luminescence of lanthanide and uranyl ions from visible to near-infrared.

Treatment of Ln(NO(3))(3)nH(2)O with 1 or 2 equiv 2,2'-bipyrimidine (BPM) in dry THF readily afforded the monometallic complexes [Ln(NO(3))(3)(bpm)(2)] (Ln=Eu, Gd, Dy, Tm) or [Ln(NO(3))(3)(bpm)(2)]THF (Ln=Eu, Tb, Er, Yb) after recrystallization from MeOH or THF, respectively. Reactions with nitrate salts of the larger lanthanide ions (Ln=Ce, Nd, Sm) yielded one of two distinct monometallic complexes, depending on the recrystallization solvent: [Ln(NO(3))(3)(bpm)(2)]THF (Ln=Nd, Sm) from THF, or [Ln(NO(3))(3)(bpm)(MeOH)(2)]MeOH (Ln=Ce, Nd, Sm) from MeOH. Treatment of UO(2)(NO(3))(2)6H(2)O with 1 equiv BPM in THF afforded the monoadduct [UO(2)(NO(3))(2)(bpm)] after recrystallization from MeOH. The complexes were characterized by their crystal structure. Solid-state luminescence measurements on these monometallic complexes showed that BPM is an efficient sensitizer of the luminescence of both the lanthanide and the uranyl ions emitting visible light, as well as of the Yb(III) ion emitting in the near-IR. For Tb, Dy, Eu, and Yb complexes, energy transfer was quite efficient, resulting in quantum yields of 80.0, 5.1, 70.0, and 0.8 %, respectively. All these complexes in the solid state were stable in air.

[1]  K. Driesen,et al.  Visible and near-infrared emission by samarium(III)-containing ionic liquid mixtures. , 2009, Inorganic chemistry.

[2]  O. Fabelo,et al.  New 3d-4f supramolecular systems constructed by [Fe(bipy)(CN)4]- and partially blocked lanthanide cations , 2009 .

[3]  Jean-Claude G Bünzli,et al.  Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates). , 2009, Physical chemistry chemical physics : PCCP.

[4]  G. Meroni,et al.  Time-resolved fluoroimmunoassay for quantitative determination of ampicillin in cow milk samples with different fat contents. , 2008, Talanta.

[5]  M. Ephritikhine,et al.  Structural diversity in neodymium bipyrimidine compounds with near infrared luminescence: from mono- and binuclear complexes to metal-organic frameworks. , 2008, Inorganic chemistry.

[6]  A. Vidal,et al.  Cyclin A probes by means of intermolecular sensitization of terbium-chelating peptides. , 2008, Journal of the American Chemical Society.

[7]  C. M. Sant’Anna,et al.  5-Enolpyruvylshikimate-3-phosphate synthase: determination of the protonation state of active site residues by the semiempirical method. , 2008, Bioorganic chemistry.

[8]  Haifeng Lu,et al.  Lanthanide-centered covalently bonded hybrids through sulfide linkage: molecular assembly, physical characterization, and photoluminescence. , 2008, Inorganic chemistry.

[9]  J. Bünzli,et al.  Structural and luminescent properties of micro- and nanosized particles of lanthanide terephthalate coordination polymers. , 2008, Inorganic chemistry.

[10]  P. Lianos,et al.  Structure and photophysical behavior of 2,2′-bipyrimidine/lanthanide ion complexes in various environments , 2008 .

[11]  J. Krause,et al.  X-ray structure and temperature dependent luminescent properties of two bimetallic europium complexes , 2008 .

[12]  B. Imperiali,et al.  Lanthanide-binding tags with unnatural amino acids: sensitizing Tb3+ and Eu3+ luminescence at longer wavelengths. , 2008, Bioconjugate chemistry.

[13]  A. Fratini,et al.  Neodymium, gadolinium, and terbium complexes containing hexafluoroacetylacetonate and 2,2'-bipyrimidine: structural and spectroscopic characterization. , 2008, Inorganic chemistry.

[14]  C. Cahill,et al.  Homo- and heterometallic coordination polymers from the f elements , 2007 .

[15]  Mohamed Eddaoudi,et al.  On the mechanism of hydrogen storage in a metal-organic framework material. , 2007, Journal of the American Chemical Society.

[16]  R. Fröhlich,et al.  Highly efficient near-IR emitting Yb/Yb and Yb/Al helicates. , 2007, Journal of the American Chemical Society.

[17]  R. Kruszyński,et al.  The synthesis, crystal structure and thermal studies of a mixed-ligand 1,10-phenanthroline and hexamethylenetetramine complex of lanthanum nitrate. Insight into coordination sphere geometry changes of lanthanide(III) 1,10-phenanthroline complexes , 2007 .

[18]  A. Fratini,et al.  Luminescent and structural properties of a Eu(III) complex: Formation of a one-dimensional array bridged by 2,2′-bipyrimidine , 2007 .

[19]  A. Bettencourt‐Dias,et al.  Lanthanide-based emitting materials in light-emitting diodes , 2007 .

[20]  Jianping Ma,et al.  Coordination-driven nanosized lanthanide "molecular lantern" with tunable luminescent properties. , 2007, Journal of the American Chemical Society.

[21]  John Calvin Reed,et al.  Robust lanthanide-based assays for the detection of anti-apoptotic Bcl-2-family protein antagonists. , 2007, Bioorganic chemistry.

[22]  S. Kitagawa,et al.  Chemistry of porous coordination polymers , 2007 .

[23]  W. Schnick,et al.  Synthesis and Characterization of Tb[N(CN)2]3·2H2O and Eu[N(CN)2]3·2H2O: Two New Luminescent Rare-Earth Dicyanamides , 2006 .

[24]  C. Cahill,et al.  Synthesis, structure and fluorescent studies of novel uranium coordination polymers in the pyridinedicarboxylic acid system. , 2006, Dalton transactions.

[25]  S. Cotton Lanthanide and Actinide Chemistry: Cotton/Lanthanide and Actinide Chemistry , 2006 .

[26]  Guanghua Li,et al.  Syntheses and photoluminescent properties of two uranyl-containing compounds with extended structures , 2006 .

[27]  A. Yoshikawa,et al.  Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels , 2005 .

[28]  S. Berneschi,et al.  Integrated optical amplifiers and microspherical lasers based on erbium-doped oxide glasses , 2005 .

[29]  J. D’Haen,et al.  Thin Films of Highly Luminescent Lanthanide Complexes Covalently Linked to an Organic−Inorganic Hybrid Material via 2-Substituted Imidazo[4,5-f]-1,10-phenanthroline Groups , 2005 .

[30]  A. Bettencourt-Dias Isophthalato-based 2D coordination polymers of Eu(III), Gd(III), and Tb(III): enhancement of the terbium-centered luminescence through thiophene derivatization. , 2005 .

[31]  L. Dai Chirale metall‐organische Systeme – ein Ansatz zur Immobilisierung asymmetrischer Homogenkatalysatoren , 2004 .

[32]  L. Dai Chiral metal-organic assemblies--a new approach to immobilizing homogeneous asymmetric catalysts. , 2004, Angewandte Chemie.

[33]  M. Tan,et al.  Preparation and Time-Resolved Fluorometric Application of Luminescent Europium Nanoparticles , 2004 .

[34]  A. Polman,et al.  Broadband sensitizers for erbium-doped planar optical amplifiers: review , 2004 .

[35]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[36]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[37]  Aldo Roda,et al.  Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging. , 2004, Journal of the American Chemical Society.

[38]  K. Driesen,et al.  Near-infrared luminescence of lanthanide calcein and lanthanide dipicolinate complexes doped into a silica-PEG hybrid material , 2004 .

[39]  Wenbin Lin,et al.  Chiral porous coordination networks: rational design and applications in enantioselective processes , 2003 .

[40]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[41]  E. Brunet,et al.  Lanthanide complexes of polycarboxylate-bearing dipyrazolylpyridine ligands with near-unity luminescence quantum yields: the effect of pyridine substitution , 2002, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[42]  Dante Gatteschi,et al.  Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. , 2002, Chemical reviews.

[43]  Junji Kido,et al.  Organo lanthanide metal complexes for electroluminescent materials. , 2002, Chemical reviews.

[44]  Yasuhiro Koike,et al.  Plastic optical fiber lasers and amplifiers containing lanthanide complexes. , 2002, Chemical reviews.

[45]  Hong Lei,et al.  Polynitrile-bridged two-dimensional crystal: Eu(III) complex with strong fluorescence emission and NLO property. , 2002, Chemical communications.

[46]  K. Driesen,et al.  Spectroscopic properties of monolithic sol-gel glasses doped with lanthanide bipyridyl complexes , 2001 .

[47]  C. Auwer,et al.  Pyridinium tetrakis(nitrato-κ2O,O′)(2,2′:6′,2′′-terpyridine-κ3N)cerate(III) pyridine solvate and bis(methanol-κO)tris(nitrato-κ2O,O′)(2,2′:6′,2′′-terpyridine-κ3N)cerium(III) , 2001 .

[48]  J. Hao,et al.  Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis , 2001 .

[49]  J. Hajdu,et al.  Femtosecond imaging of biomolecules by X-rays , 2000 .

[50]  S. Cotton,et al.  Bis(2,2′-bipyridyl-N,N′)­tris­(nitrato-O,O′)­neodymium , 2000 .

[51]  A. Cheetham,et al.  Anorganische Materialien mit offenen Gerüsten , 1999 .

[52]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[53]  G. Adachi,et al.  Preparation and Luminescence Properties of Organically Modified Silicate Composite Phosphors Doped with an Europium(III) β-Diketonate Complex , 1999 .

[54]  T. Jüstel,et al.  New Developments in the Field of Luminescent Materials for Lighting and Displays. , 1998, Angewandte Chemie.

[55]  P. Lianos,et al.  Strongly Luminescent Poly(ethylene glycol)-2,2′-bipyridine Lanthanide Ion Complexes , 1998 .

[56]  Thomas Jüstel,et al.  Neue Entwicklungen auf dem Gebiet lumineszierender Materialien für Beleuchtungs‐ und Displayanwendungen , 1998 .

[57]  Hermi F. Brito,et al.  Experimental and theoretical emission quantum yield in the compound Eu(thenoyltrifluoroacetonate)3.2(dibenzyl sulfoxide) , 1998 .

[58]  O. A. Serra,et al.  Tb3+ molecular photonic devices supported on silica gel and functionalized silica gel , 1997 .

[59]  Nobuyoshi Takeuchi,et al.  A New Long Phosphorescent Phosphor with High Brightness, SrAl2 O 4 : Eu2 + , Dy3 + , 1996 .

[60]  G. Adachi,et al.  Luminescence Property of the Terbium Bipyridyl Complex Incorporated in Silica Matrix by a Sol‐Gel Method , 1995 .

[61]  M. Frechette,et al.  X-ray and multinuclear magnetic resonance study of the complexes of lanthanum(III) with 2,2{prime}:6{prime},2{double_prime}-terpyridine , 1995 .

[62]  M. Bredol,et al.  Designing Luminescent Materials , 1991 .

[63]  D. Flanders,et al.  Actinide structural studies. 15. Two 1,10-phenanthroline complexes of uranium(VI) , 1988 .

[64]  A. Caneschi,et al.  Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions , 1985 .

[65]  Nathaniel W. Alcock,et al.  A unique expansion on substituting neptunium for uranium in an actinyl complex , 1984 .

[66]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[67]  J. Wood,et al.  Crystal and molecular structure of trinitratobis(bipyridyl)lanthanum(III) , 1972 .

[68]  J. Geusic,et al.  LASER OSCILLATIONS IN Nd‐DOPED YTTRIUM ALUMINUM, YTTRIUM GALLIUM AND GADOLINIUM GARNETS , 1964 .

[69]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[70]  C. Daiguebonne,et al.  Lanthanide-containing coordination polymers , 2004 .

[71]  M. Drew,et al.  Separation of americium(III) from europium(III) with tridentate heterocyclic nitrogen ligands and crystallographic studies of complexes formed by 2,2′∶6′,2′′-terpyridine with the lanthanides , 2000 .

[72]  M. Drew,et al.  Theoretical and experimental studies of the protonated terpyridine cation. Ab initio quantum mechanics calculations, and crystal structures of two different ion pairs formed between protonated terpyridine cations and nitratolanthanate(III) anions† , 1998 .

[73]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.