The Synchronization Problem for Locally Strongly Transitive Automata

The synchronization problem is investigated for a new class of deterministic automata called locally strongly transitive. An application to synchronizing colorings of aperiodic graphs with a cycle of prime length is also considered.

[1]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.

[2]  Mikhail V. Volkov,et al.  Synchronizing generalized monotonic automata , 2005, Theor. Comput. Sci..

[3]  P. FRANKL,et al.  An Extremal Problem for two Families of Sets , 1982, Eur. J. Comb..

[4]  L. Dubuc,et al.  Sur Les Automates Circulaires et la Conjecture de Cerný , 1998, RAIRO Theor. Informatics Appl..

[5]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[6]  Flavio D'Alessandro,et al.  The Synchronization Problem for Strongly Transitive Automata , 2008, Developments in Language Theory.

[7]  I. K. Rystsov,et al.  Almost optimal bound of recurrent word length for regular automata , 1995 .

[8]  A. N. Trahtman The Černý Conjecture for Aperiodic Automata , 2005 .

[9]  Jarkko Kari,et al.  Synchronizing Finite Automata on Eulerian Digraphs , 2003, MFCS.

[10]  Benjamin Weiss,et al.  Equivalence of topological Markov shifts , 1977 .

[11]  Arturo Carpi,et al.  On Synchronizing Unambiguous Automata , 1988, Theor. Comput. Sci..

[12]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[13]  Dominique Perrin,et al.  A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata , 2009, Developments in Language Theory.

[14]  Jean-Éric Pin,et al.  Sur un Cas Particulier de la Conjecture de Cerny , 1978, ICALP.

[15]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[16]  A. N. Trahtman,et al.  The road coloring problem , 2007, 0709.0099.

[17]  G. O'Brien,et al.  The road-colouring problem , 1981 .

[18]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[19]  Arto Salomaa,et al.  Many-Valued Truth Functions, Cerny's Conjecture and Road Coloring , 1999, Bull. EATCS.

[20]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .