Revisiting empirical ocean-colour algorithms for remote estimation of chlorophyll-a content on a global scale

ABSTRACT Remote-sensing data can be useful for investigating the bio-optical properties of the ocean. Among these bio-optical properties, chlorophyll-a content is of great importance. The standard NASA empirical ocean-colour (OC) algorithms are used widely to estimate global chlorophyll-a content. Despite their simplicity and effectiveness, these regression-based models have two shortcomings that we investigate here: (1) the general form of the models is a fourth-order polynomial that results in multicollinearity, and (2) the models have the same parameters for all ocean regions (i.e. they use global approaches). To resolve the first issue, we use partial least squares (PLS), which allows for an orthogonal transformation such that the covariance between the transformed independent variables and the dependent variable is maximized. To investigate the second issue, we use geographically weighted regression (GWR) to reveal the spatial variation of estimated parameters, demonstrating how the global model underperforms in some locations. GWR results show that model coefficients vary substantially between eastern and western portions of the same ocean basin. By including sea-surface temperature (SST) as an additional independent variable in the PLS model, we also develop a new approach that provides additional explanatory power and makes the global estimation of chlorophyll-a content more valid.

[1]  S. Maritorena,et al.  Consistent merging of satellite ocean color data sets using a bio-optical model , 2005 .

[2]  Peter Regner,et al.  The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms , 2015 .

[3]  F. Gohin,et al.  A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters , 2002 .

[4]  H. Dierssen Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate , 2010, Proceedings of the National Academy of Sciences.

[5]  H. Woerd,et al.  Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean , 2013 .

[6]  B. Worm,et al.  Global phytoplankton decline over the past century , 2010, Nature.

[7]  R. Woodward,et al.  The total synthesis of chlorophyll a , 1990 .

[8]  T. Platt,et al.  Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches , 2001 .

[9]  R. Murtugudde,et al.  Global correlations between winds and ocean chlorophyll , 2010 .

[10]  F. Muller‐Karger,et al.  On the absorption of light in the Orinoco River plume , 2007 .

[11]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[12]  P Jeremy Werdell,et al.  Generalized ocean color inversion model for retrieving marine inherent optical properties. , 2013, Applied optics.

[13]  Renato Cordeiro de Amorim,et al.  Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering , 2012, Pattern Recognit..

[14]  J. Srinivasan,et al.  Enhanced aerosol loading over Arabian Sea during the pre‐monsoon season: Natural or anthropogenic? , 2002 .

[15]  Xiao‐Hai Yan,et al.  Development and application of a neural network based ocean colour algorithm in coastal waters , 2005 .

[16]  Eric R. Ziegel,et al.  Geographically Weighted Regression , 2006, Technometrics.

[17]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[18]  Chuanmin Hu,et al.  Oceanic Chlorophyll-a Content , 2014 .

[19]  B. Franz,et al.  Estimating variability in the quantum yield of Sun-induced chlorophyll fluorescence: A global analysis of oceanic waters , 2013 .

[20]  C. McClain,et al.  Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans , 2005 .

[21]  M. Conkright,et al.  Global seasonal climatologies of ocean chlorophyll: Blending in situ and satellite data for the Coastal Zone Color Scanner era , 2001 .

[22]  Jennifer P. Cannizzaro,et al.  Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters , 2006 .

[23]  R. Najjar,et al.  Influence of precipitation events on phytoplankton biomass in coastal waters of the eastern United States , 2014 .

[24]  P. Deschamps,et al.  Airborne remote sensing of chlorophyll content under cloudy sky as applied to the tropical waters in the Gulf of Guinea , 1978 .

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  W. Gregg,et al.  Global and regional evaluation of the SeaWiFS chlorophyll data set , 2004 .

[27]  Bryan A. Franz,et al.  Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference , 2012 .

[28]  E. Boyle,et al.  The global carbon cycle: a test of our knowledge of earth as a system. , 2000, Science.

[29]  David McKee,et al.  Optical water type discrimination and tuning remote sensing band-ratio algorithms: Application to retrieval of chlorophyll and Kd(490) in the Irish and Celtic Seas , 2007 .

[30]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[31]  Mik Wisniewski,et al.  Applied Regression Analysis: A Research Tool , 1990 .

[32]  M. Behrenfeld,et al.  Independence and interdependencies among global ocean color properties: Reassessing the bio‐optical assumption , 2005 .

[33]  Menghua Wang,et al.  Seawifs Postlaunch Calibration and Validation Analyses , 2013 .

[34]  Scott C. Doney,et al.  Oceanography: Plankton in a warmer world , 2006, Nature.

[35]  Terri L. Moore,et al.  Regression Analysis by Example , 2001, Technometrics.

[36]  W. W. Muir,et al.  Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1980 .

[37]  L. Leemis Applied Linear Regression Models , 1991 .

[38]  Timothy S. Moore,et al.  A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product , 2009 .

[39]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[40]  A. Barnard,et al.  Under the hood of satellite empirical chlorophyll a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties. , 2012, Optics express.

[41]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[42]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[43]  J. Neter,et al.  Applied Linear Regression Models , 1983 .

[44]  Clifford M. Hurvich,et al.  Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .

[45]  Chuanmin Hu,et al.  Validation of SeaWiFS chlorophyll a concentrations in the Southern Ocean: A revisit , 2006 .

[46]  D. Siegel,et al.  Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea , 1997 .

[47]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[48]  Menghua Wang,et al.  Remote Sensing of Inherent Optical Properties : Fundamentals , 2009 .

[49]  L. Pomeroy The Ocean's Food Web, A Changing Paradigm , 1974 .

[50]  Janet W. Campbell,et al.  The lognormal distribution as a model for bio‐optical variability in the sea , 1995 .

[51]  Trevor Platt,et al.  Impact of missing data on the estimation of ecological indicators from satellite ocean-colour time-series , 2014 .

[52]  P. Strutton,et al.  Three improved satellite chlorophyll algorithms for the Southern Ocean , 2013 .

[53]  R. Koschel,et al.  Primary Production , 2021, Tropical Marine Ecology.

[54]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[55]  J. Richman,et al.  SeaWiFS satellite ocean color data from the Southern Ocean , 1999 .

[56]  Timothy M. Lenton,et al.  The impact of temperature on marine phytoplankton resource allocation and metabolism , 2013 .

[57]  Janet W. Campbell,et al.  Are the world's oceans optically different? , 2011 .

[58]  Martin Charlton,et al.  The Geography of Parameter Space: An Investigation of Spatial Non-Stationarity , 1996, Int. J. Geogr. Inf. Sci..

[59]  A. Gitelson,et al.  A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation , 2008 .

[60]  U. Riebesell,et al.  Adaptation of a globally important coccolithophore to ocean warming and acidification , 2014 .

[61]  M. Behrenfeld,et al.  Colored dissolved organic matter and its influence on the satellite‐based characterization of the ocean biosphere , 2005 .

[62]  C. Garcia,et al.  Bio-optical characteristics of the Patagonia shelf break waters: Implications for ocean color algorithms , 2013 .

[63]  T. Johengen,et al.  Spring phytoplankton photosynthesis, growth, and primary production and relationships to a recurrent coastal sediment plume and river inputs in southeastern Lake Michigan , 2004 .

[64]  J. O. Rawlings,et al.  Applied Regression Analysis , 1998 .

[65]  Martin Charlton,et al.  The Geography of Parameter Space: An Investigation of Spatial Non-Stationarity , 1996, Int. J. Geogr. Inf. Sci..

[66]  P. J. Werdell,et al.  An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation , 2005 .

[67]  Hans Joachim Schellnhuber,et al.  Declining ocean chlorophyll under unabated anthropogenic CO2 emissions , 2011 .

[68]  D. Stramski,et al.  An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea , 2004 .

[69]  Pierre Larouche,et al.  Development of an explicit algorithm for remote sensing estimation of chlorophyll a using symbolic regression. , 2012, Optics letters.

[70]  Y. Zha,et al.  A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China , 2009 .

[71]  J. Norfolk,et al.  Primary Production of the Biosphere , 1976 .

[72]  S. Sathyendranath,et al.  Effect of pigment composition on absorption properties of phytoplankton , 1991 .

[73]  B. Lesht,et al.  A band-ratio algorithm for retrieving open-lake chlorophyll values from satellite observations of the Great Lakes , 2013 .