On the Polarization of Rényi Entropy

Existing polarization theories have mostly been concerned with Shannon’s information measures, such as Shannon entropy and mutual information, and some related measures such as the Bhattacharyya parameter. In this work, we extend polarization theories to a more general information measure, namely, the Rényi entropy. Our study shows that under conditional Rényi entropies of different orders, the same synthetic sub-channel may exhibit opposite extremal states. This result reveals more insights into the polarization phenomenon on the micro scale (probability pairs) rather than on the average scale (entropy, mutual information, etc.).

[1]  J. Neyman Contributions to the theory of statistics , 1956 .

[2]  Erdal Arikan,et al.  Varentropy Decreases Under the Polar Transform , 2015, IEEE Transactions on Information Theory.

[3]  A. Rényi On Measures of Entropy and Information , 1961 .

[4]  Erdal Arikan,et al.  A note on polarization martingales , 2014, 2014 IEEE International Symposium on Information Theory.

[5]  Matthieu R. Bloch,et al.  Physical Layer Security , 2020, Encyclopedia of Wireless Networks.

[6]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[7]  Christian Cachin,et al.  Entropy measures and unconditional security in cryptography , 1997 .

[8]  Remi A. Chou,et al.  Polar coding for secret-key generation , 2013, 2013 IEEE Information Theory Workshop (ITW).

[9]  Junji Shikata,et al.  Information Theoretic Security for Encryption Based on Conditional Rényi Entropies , 2013, ICITS.

[10]  Emmanuel Abbe,et al.  Randomness and dependencies extraction via polarization , 2011, 2011 Information Theory and Applications Workshop.

[11]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[12]  Gholamhossein Yari,et al.  Some properties of Rényi entropy and Rényi entropy rate , 2009, Inf. Sci..

[13]  P. Jizba,et al.  The world according to R enyi: thermodynamics of multifractal systems , 2002, cond-mat/0207707.

[14]  Emre Telatar,et al.  Polarization improves E0 , 2013, 2013 IEEE International Symposium on Information Theory.

[15]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.