Computational investigation of inverse Heusler compounds for spintronics applications
暂无分享,去创建一个
Avik W. Ghosh | Sahar Keshavarz | Jiangang He | Dipanjan Mazumdar | C. Wolverton | W. Butler | Jianhua Ma | K. Munira | S. Keshavarz | D. Mazumdar | C. Wolverton | William H. Butler | Kamaram Munira | Jianhua Ma | Jiangang He | Tim Lovorn | T. Lovorn
[1] 한성민,et al. WDR5 promotes the tumorigenesis of oral squamous cell carcinoma via CARM1/β-catenin axis , 2021, Odontology.
[2] X. Dai,et al. Mn2 CoSb compound: Structural, electronic, transport and magnetic properties , 2006 .
[3] Nobuki Tezuka,et al. Improved tunnel magnetoresistance of magnetic tunnel junctions with Heusler Co2FeAl0.5Si0.5 electrodes fabricated by molecular beam epitaxy , 2009 .
[4] K. Hono,et al. Large magnetoresistance in current-perpendicular-to-plane pseudospin valve using a Co2Fe(Ge0.5Ga0.5) Heusler alloy , 2011 .
[5] Tanmoy Das,et al. Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.
[6] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[7] Magn. , 2020, Catalysis from A to Z.
[8] G. Reiss,et al. Exchange interactions and Curie temperatures of Mn2CoZ compounds , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[9] Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.
[10] K. Hono,et al. Highly spin-polarized Co 2MnGa 0.5Sn 0.5 Heusler compound , 2009 .
[11] F. Meng,et al. Competition of XA and L21B ordering in Heusler alloys Mn2CoZ (Z = Al, Ga, Si, Ge and Sb) and its influence on electronic structure , 2017 .
[12] David L. Olmsted,et al. Efficient stochastic generation of special quasirandom structures , 2013 .
[13] Paolo Ruggerone,et al. Computational Materials Science X , 2002 .
[14] G. Fecher,et al. Spintronics: a challenge for materials science and solid-state chemistry. , 2007, Angewandte Chemie.
[15] F. Ahmadian,et al. Half-metallicity in the Inverse Heusler compounds Sc2MnZ (Z = C, Si, Ge, and Sn) , 2014 .
[16] S. Blügel,et al. Conditions for spin-gapless semiconducting behavior in Mn2CoAl inverse Heusler compound , 2014 .
[17] Huibin Xu,et al. Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl , 2008 .
[18] K. Ishida,et al. Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy , 2008 .
[19] 小谷 正雄. 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .
[20] K.H.J. Buschow,et al. Magneto-optical properties of metallic ferromagnetic materials , 1983 .
[21] Hui Yan,et al. First‐principles study on half‐metallic properties of CuHg2Ti‐type alloys FeV2Z (Z = Si, Ge, As, Sb) , 2011 .
[22] P. Leclair,et al. Large magnetoresistance in hybrid spin filter devices , 2002 .
[23] Basics and prospective of magnetic Heusler compounds , 2015 .
[24] Masafumi Yamamoto,et al. Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling , 2012 .
[25] Muratahan Aykol,et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .
[26] M. Pugaczowa-Michalska. Theoretical prediction of ferrimagnetism in Mn2FeB, Mn2CoB and Mn2NiB , 2012 .
[27] Hjm Henk Swagten,et al. Highly ordered, half-metallic Co2FeSi single crystals , 2009 .
[28] P. Voyles,et al. Influence of film composition in quaternary Heusler alloy Co2(Mn,Fe)Si thin films on tunnelling magnetoresistance of Co2(Mn,Fe)Si/MgO-based magnetic tunnel junctions , 2015 .
[29] G. Fecher,et al. Tuning the magnetism of the Heusler alloys Mn3−xCoxGa from soft and half-metallic to hard-magnetic for spin-transfer torque applications , 2011 .
[30] D. Worledge,et al. Magnetoresistive double spin filter tunnel junction , 2000 .
[31] J. Christodoulides,et al. Magnetic and Transport Properties of Co2MnSnxSb1−x Heusler Alloys , 2009 .
[32] K.H.J. Buschow,et al. Magnetic and magneto-optical properties of heusler alloys based on aluminium and gallium , 1981 .
[33] Chem. , 2020, Catalysis from A to Z.
[34] H. LIPSON,et al. International union of crystallography , 1953 .
[35] John C. Slater,et al. Electronic Structure of Alloys , 1937 .
[36] P. Nash,et al. Enthalpies of formation of selected Fe2YZ Heusler compounds , 2015 .
[37] J. Kübler. Ab initio estimates of the Curie temperature for magnetic compounds , 2006 .
[38] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[39] N. Kervan,et al. Half-metallic properties of Ti2FeSi full-Heusler compound , 2011 .
[40] Appearance of half-metallicity in the quaternary Heusler alloys , 2003, cond-mat/0305134.
[41] M. Oogane,et al. Enhancement in tunnel magnetoresistance effect by inserting CoFeB to the tunneling barrier interface in Co2MnSi/MgO/CoFe magnetic tunnel junctions , 2009 .
[42] Axel van de Walle,et al. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.
[43] Huibin Xu,et al. Effect of the main-group elements on the electronic structures and magnetic properties of Heusler alloys Mn2NiZ (Z=In, Sn, Sb) , 2009 .
[44] Muratahan Aykol,et al. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .
[45] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[46] Atsufumi Hirohata,et al. Future perspectives for spintronic devices , 2014 .
[47] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[48] F. Meng,et al. Investigation of the site preference in Mn2RuSn using KKR-CPA-LDA calculation , 2015 .
[49] Christopher M Wolverton,et al. High‐Throughput Computational Screening of New Li‐Ion Battery Anode Materials , 2013 .
[50] I. Galanakis,et al. First-principles electronic and magnetic properties of the half-metallic antiferromagnet Cr2MnSb , 2009 .
[51] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[52] S. Streltsov,et al. Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys , 2008 .
[53] C. Felser,et al. New Mn2-based Heusler Compounds† , 2014 .
[54] Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3-xCoxGa , 2011 .
[55] K. Ziebeck,et al. Magnetic properties of new compounds RuMn2Sn and RuMn2Si , 2012 .
[56] Christopher M Wolverton,et al. First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .
[57] Andrew G. Glen,et al. APPL , 2001 .
[58] K. Hono,et al. Bulk and interfacial scatterings in current-perpendicular-to-plane giant magnetoresistance with Co2Fe(Al0.5Si0.5) Heusler alloy layers and Ag spacer , 2010 .
[59] K. Özdoğan,et al. Search for spin gapless semiconductors: The case of inverse Heusler compounds , 2012, 1210.5355.