Computational investigation of inverse Heusler compounds for spintronics applications

Jianhua Ma, ∗ Jiangang He, Dipanjan Mazumdar, Kamaram Munira, Sahar Keshavarz, 5 Tim Lovorn, 5 C. Wolverton, Avik W. Ghosh, and William H. Butler 5, † Department of Electrical and Computer Engineering, University of Virginia, Charlottesville,VA-22904, USA Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, USA Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35401, USA Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35401, USA (Dated: December 7, 2017)

[1]  한성민,et al.  WDR5 promotes the tumorigenesis of oral squamous cell carcinoma via CARM1/β-catenin axis , 2021, Odontology.

[2]  X. Dai,et al.  Mn2 CoSb compound: Structural, electronic, transport and magnetic properties , 2006 .

[3]  Nobuki Tezuka,et al.  Improved tunnel magnetoresistance of magnetic tunnel junctions with Heusler Co2FeAl0.5Si0.5 electrodes fabricated by molecular beam epitaxy , 2009 .

[4]  K. Hono,et al.  Large magnetoresistance in current-perpendicular-to-plane pseudospin valve using a Co2Fe(Ge0.5Ga0.5) Heusler alloy , 2011 .

[5]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[6]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[7]  Magn. , 2020, Catalysis from A to Z.

[8]  G. Reiss,et al.  Exchange interactions and Curie temperatures of Mn2CoZ compounds , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[10]  K. Hono,et al.  Highly spin-polarized Co 2MnGa 0.5Sn 0.5 Heusler compound , 2009 .

[11]  F. Meng,et al.  Competition of XA and L21B ordering in Heusler alloys Mn2CoZ (Z = Al, Ga, Si, Ge and Sb) and its influence on electronic structure , 2017 .

[12]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[13]  Paolo Ruggerone,et al.  Computational Materials Science X , 2002 .

[14]  G. Fecher,et al.  Spintronics: a challenge for materials science and solid-state chemistry. , 2007, Angewandte Chemie.

[15]  F. Ahmadian,et al.  Half-metallicity in the Inverse Heusler compounds Sc2MnZ (Z = C, Si, Ge, and Sn) , 2014 .

[16]  S. Blügel,et al.  Conditions for spin-gapless semiconducting behavior in Mn2CoAl inverse Heusler compound , 2014 .

[17]  Huibin Xu,et al.  Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl , 2008 .

[18]  K. Ishida,et al.  Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy , 2008 .

[19]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[20]  K.H.J. Buschow,et al.  Magneto-optical properties of metallic ferromagnetic materials , 1983 .

[21]  Hui Yan,et al.  First‐principles study on half‐metallic properties of CuHg2Ti‐type alloys FeV2Z (Z = Si, Ge, As, Sb) , 2011 .

[22]  P. Leclair,et al.  Large magnetoresistance in hybrid spin filter devices , 2002 .

[23]  Basics and prospective of magnetic Heusler compounds , 2015 .

[24]  Masafumi Yamamoto,et al.  Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling , 2012 .

[25]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[26]  M. Pugaczowa-Michalska Theoretical prediction of ferrimagnetism in Mn2FeB, Mn2CoB and Mn2NiB , 2012 .

[27]  Hjm Henk Swagten,et al.  Highly ordered, half-metallic Co2FeSi single crystals , 2009 .

[28]  P. Voyles,et al.  Influence of film composition in quaternary Heusler alloy Co2(Mn,Fe)Si thin films on tunnelling magnetoresistance of Co2(Mn,Fe)Si/MgO-based magnetic tunnel junctions , 2015 .

[29]  G. Fecher,et al.  Tuning the magnetism of the Heusler alloys Mn3−xCoxGa from soft and half-metallic to hard-magnetic for spin-transfer torque applications , 2011 .

[30]  D. Worledge,et al.  Magnetoresistive double spin filter tunnel junction , 2000 .

[31]  J. Christodoulides,et al.  Magnetic and Transport Properties of Co2MnSnxSb1−x Heusler Alloys , 2009 .

[32]  K.H.J. Buschow,et al.  Magnetic and magneto-optical properties of heusler alloys based on aluminium and gallium , 1981 .

[33]  Chem. , 2020, Catalysis from A to Z.

[34]  H. LIPSON,et al.  International union of crystallography , 1953 .

[35]  John C. Slater,et al.  Electronic Structure of Alloys , 1937 .

[36]  P. Nash,et al.  Enthalpies of formation of selected Fe2YZ Heusler compounds , 2015 .

[37]  J. Kübler Ab initio estimates of the Curie temperature for magnetic compounds , 2006 .

[38]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[39]  N. Kervan,et al.  Half-metallic properties of Ti2FeSi full-Heusler compound , 2011 .

[40]  Appearance of half-metallicity in the quaternary Heusler alloys , 2003, cond-mat/0305134.

[41]  M. Oogane,et al.  Enhancement in tunnel magnetoresistance effect by inserting CoFeB to the tunneling barrier interface in Co2MnSi/MgO/CoFe magnetic tunnel junctions , 2009 .

[42]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[43]  Huibin Xu,et al.  Effect of the main-group elements on the electronic structures and magnetic properties of Heusler alloys Mn2NiZ (Z=In, Sn, Sb) , 2009 .

[44]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[45]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[46]  Atsufumi Hirohata,et al.  Future perspectives for spintronic devices , 2014 .

[47]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[48]  F. Meng,et al.  Investigation of the site preference in Mn2RuSn using KKR-CPA-LDA calculation , 2015 .

[49]  Christopher M Wolverton,et al.  High‐Throughput Computational Screening of New Li‐Ion Battery Anode Materials , 2013 .

[50]  I. Galanakis,et al.  First-principles electronic and magnetic properties of the half-metallic antiferromagnet Cr2MnSb , 2009 .

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  S. Streltsov,et al.  Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys , 2008 .

[53]  C. Felser,et al.  New Mn2-based Heusler Compounds† , 2014 .

[54]  Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3-xCoxGa , 2011 .

[55]  K. Ziebeck,et al.  Magnetic properties of new compounds RuMn2Sn and RuMn2Si , 2012 .

[56]  Christopher M Wolverton,et al.  First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .

[57]  Andrew G. Glen,et al.  APPL , 2001 .

[58]  K. Hono,et al.  Bulk and interfacial scatterings in current-perpendicular-to-plane giant magnetoresistance with Co2Fe(Al0.5Si0.5) Heusler alloy layers and Ag spacer , 2010 .

[59]  K. Özdoğan,et al.  Search for spin gapless semiconductors: The case of inverse Heusler compounds , 2012, 1210.5355.