Boolean and classical restriction categories

A restriction category is an abstract category of partial maps. A Boolean restriction category is a restriction category that supports classical (Boolean) reasoning. Such categories are models of loop-free dynamic logic that is deterministic in the sense that Q ⊂ [α]Q. Classical restriction categories are restriction categories with a locally Boolean structure: it is shown that they are precisely full subcategories of Boolean restriction categories. In particular, a Boolean restriction category may be characterised as a classical restriction category with finite coproducts in which all restriction idempotents split. Every restriction category admits a restriction embedding into a Boolean restriction category. Thus, every abstract category of partial maps admits a conservative extension that supports classical reasoning. An explicit construction of the classical completion of a restriction category is given.

[1]  Ernie Manes Boolean restriction categories and taut monads , 2006, Theor. Comput. Sci..

[2]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[3]  Philip S. Mulry Partial Map Classifiers and Partial Cartesian Closed Categories , 1994, Theor. Comput. Sci..

[4]  STABLE MEET SEMILATTICE FIBRATIONS AND FREE RESTRICTION CATEGORIES , 2006 .

[5]  Martín Hötzel Escardó,et al.  The regular-locally compact coreflection of a stably locally compact locale , 2001 .

[6]  Peter Freyd,et al.  Aspects of topoi , 1972, Bulletin of the Australian Mathematical Society.

[7]  Albert R. Meyer,et al.  Computability and completeness in logics of programs (Preliminary Report) , 1977, STOC '77.

[8]  J. M. BocheŃski,et al.  The Axiomatic Method , 1965 .

[9]  J. Robin B. Cockett,et al.  Restriction categories I: categories of partial maps , 2002, Theor. Comput. Sci..

[10]  David J. Pym,et al.  On categorical models of classical logic and the Geometry of Interaction , 2007, Mathematical Structures in Computer Science.

[11]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[12]  Ernest G. Manes Predicate transformer semantics , 1992, Cambridge tracts in theoretical computer science.

[13]  Marcel Jackson,et al.  Partial Maps with Domain and Range: Extending Schein's Representation , 2009 .

[14]  John Fountain A CLASS OF RIGHT PP MONOIDS , 1977 .

[15]  Edmund Robinson,et al.  Categories of Partial Maps , 1988, Inf. Comput..

[16]  J. Robin B. Cockett,et al.  Restriction categories III: colimits, partial limits and extensivity , 2007, Mathematical Structures in Computer Science.

[17]  Philip S. Mulry Monads and Algebras in the Semantics or Partial Data Types , 1992, Theor. Comput. Sci..

[18]  Boris M. Schein,et al.  Relation algebras and function semigroups , 1970 .

[19]  Ernest G. Manes,et al.  Implementing collection classes with monads , 1998, Mathematical Structures in Computer Science.

[20]  Ernest G. Manes,et al.  Taut Monads and T0-spaces , 2002, Theor. Comput. Sci..

[21]  Marcel Jackson,et al.  An Invitation to C-semigroups , 2001 .

[22]  K. Segerberg A completeness theorem in the modal logic of programs , 1982 .

[23]  Dexter Kozen,et al.  A Representation Theorem for Models of *-Free PDL , 1980, ICALP.

[24]  Marco Grandis Cohesive categories and manifolds , 1990 .

[25]  E. Moggi The partial lambda calculus , 1988 .

[26]  A. Batbedat γ-demi-groupes, demi-modules, produits demi-directs , 1981 .

[27]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[28]  Alex Heller,et al.  Dominical categories: recursion theory without elements , 1987, Journal of Symbolic Logic.

[29]  C. C. Elgot Monadic Computation And Iterative Algebraic Theories , 1982 .

[30]  Pedro Resende,et al.  Étale groupoids and their quantales , 2007 .

[31]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[32]  A. Sklar,et al.  The algebra of functions. II , 1961 .

[33]  J. Robin B. Cockett,et al.  Restriction categories II: partial map classification , 2003, Theor. Comput. Sci..

[34]  E. Manes Guarded and Banded Semigroups , 2006 .

[35]  Karl Menger,et al.  Calculus, a modern approach , 1954 .

[36]  Karl Menger An Axiomatic Theory of Functions and Fluents , 2003 .