Overset Solution Adaptive Grid Approach Applied to Hovering Rotorcraft Flows

Numerical simulation of hovering rotorcraft flow fields with emphasis on the accurate capture of the vortical wake is examined. The present approach utilizes the OVERFLOW Navier-Stokes flow solver, which has been enhanced with a solution adaptive grid capability. Regions of the flow within the off-body Cartesian grid that contain concentrated levels of vorticity are systematically refined within the constraints of the overset zonal grid approach. The resulting vortical flow field is captured more accurately relative to solutions that do not use any form of refinement and with significantly fewer grid points relative to solutions that utilize uniform refinement.

[1]  J. Gordon Leishman,et al.  High-Resolution Computational and Experimental Study of Rotary-Wing Tip Vortex Formation , 2007 .

[2]  James D. Baeder,et al.  Evaluation of a Navier-Stokes Analysis Method for Hover Performance Prediction , 1996 .

[3]  J. Benek,et al.  A 3-D Chimera Grid Embedding Technique , 1985 .

[4]  Mark Potsdam,et al.  Rotor Airloads Prediction Using Loose Aerodynamic/Structural Coupling , 2004 .

[5]  Roger C. Strawn,et al.  Computational Modeling of Hovering Rotor and Wake Aerodynamics , 2001 .

[6]  James T. Heineck,et al.  Application of Three-Component PIV to a Hovering Rotor Wake , 2000 .

[7]  Christophe Benoit,et al.  Three-Dimensional Inviscid Isolated Rotor Calculations Using Chimera and Automatic Cartesian Partitioning Methods , 2003 .

[8]  Robert L. Meakin,et al.  Automatic Off-Body Grid Generation for Domains of Arbitrary Size , 2001 .

[9]  Hossein Saberi,et al.  CFD and CSD Coupling Algorithms and Fluid Structure Interface for Rotorcraft Aeromechanics in Steady and Transient Flight Conditions , 2006 .

[10]  Oh Joon Kwon,et al.  Simulation of unsteady rotor flow field using unstructured adaptive sliding meshes , 2004 .

[11]  O. J. Boelens,et al.  Boundary Conforming Discontinuous Galerkin Finite Element Approach for Rotorcraft Simulations , 2002 .

[12]  Ewald Krämer,et al.  Tip Vortex Conservation on a Main Rotor in Slow Descent Flight Using Vortex-Adapted Chimera Grids , 2006 .

[13]  Robert L. Meakin,et al.  Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover , 1995 .

[14]  Robert L. Meakin,et al.  CHSSI Software for Geometrically Complex Unsteady Aerodynamic Applications , 2001 .

[15]  Oh Joon Kwon,et al.  Unstructured Mesh Navier-Stokes Calculations of the Flow Field of a Helicopter Rotor in Hover , 2002 .

[16]  Roger C. Strawn,et al.  Hovering Rotor and Wake Calculations with an Overset-Grid Navier-Stokes Solver , 1999 .

[17]  Mark Potsdam,et al.  TURBULENCE MODELING TREATMENT FOR ROTORCRAFT WAKES , 2008 .

[18]  Robert L. Meakin,et al.  Object X-Rays for Cutting Holes in Composite Overset Structured Grids , 2001 .

[19]  Roger C. Strawn,et al.  CFD Simulations of Tiltrotor Configurations in Hover , 2005 .

[20]  Lakshmi N. Sankar,et al.  Revolutionary Physics-Based Design Tools for Quiet Helicopters, Phase I-B Extension , 2006 .

[21]  Hubert Pomin,et al.  Aeroelastic Analysis of Helicopter Rotor Blades on Deformable Chimera Grids , 2004 .

[22]  T. Barth,et al.  A one-equation turbulence transport model for high Reynolds number wall-bounded flows , 1990 .

[23]  Roger C. Strawn,et al.  Prediction of HART II Rotor BVI Loading and Wake System Using CFD/CSD Loose Coupling , 2007 .

[24]  Oh Joon Kwon,et al.  Simulation of unsteady rotor-fuselage aerodynamic interaction using unstructured adaptive meshes , 2006 .

[25]  James T. Heineck,et al.  Measurements of the Early Development of Trailing Vorticity from a Rotor , 2002 .

[26]  Robert L. Meakin An Efficient Means of Adaptive Refinement Within Systems of Overset Grids , 1995 .

[27]  Robert L. Meakin Adaptive spatial partitioning and refinement for overset structured grids , 2000 .

[28]  Nandita,et al.  Structured Adaptive Mesh Refinement (SAMR) Algorithms Applied to Rotor Wake Capturing , 2007 .

[29]  Lakshmi N. Sankar,et al.  Application of Higher Order Spatially Accurate Schemes to Rotors in Hover , 2006 .

[30]  Jayanrayanan Sitaraman,et al.  Evaluation of the Wake Prediction Methodologies Used in CFD Based Rotor Airload Computation , 2006 .

[31]  J. G. Leishman,et al.  Correlation of Helicopter Rotor Tip Vortex Measurements , 2000 .

[32]  J. G. Leishman,et al.  Challenges in Understanding the Vortex Dynamics of Helicopter Rotor Wakes , 1998 .

[33]  Dimitri J. Mavriplis,et al.  A Multi-Code Python-Based Infrastructure for Overset CFD with Adaptive Cartesian Grids , 2008 .

[34]  A.C.B. Dimanlig,et al.  Computational Modeling of the CH-47 Helicopter in Hover , 2007, 2007 DoD High Performance Computing Modernization Program Users Group Conference.

[35]  Inderjit Chopra,et al.  CFD/CSD Prediction of Rotor Vibratory Loads in High-Speed Flight , 2006 .

[36]  P. Buning,et al.  Numerical simulation of the integrated space shuttle vehicle in ascent , 1988 .

[37]  J. Gordon Leishman,et al.  Understanding the Aerodynamic Efficiency of a Hovering Micro-Rotor , 2008 .