Breast cancer genomes from CHEK2 c.1100delC mutation carriers lack somatic TP53 mutations and display a unique structural variant size distribution profile

[1]  M. Smid,et al.  Lost by Transcription: Fork Failures, Elevated Expression, and Clinical Consequences Related to Deletions in Metastatic Colorectal Cancer , 2022, International journal of molecular sciences.

[2]  R. Eeles,et al.  Functional Analysis Identifies Damaging CHEK2 Missense Variants Associated with Increased Cancer Risk , 2021, Cancer research.

[3]  Nadezhda T. Doncheva,et al.  The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets , 2020, Nucleic Acids Res..

[4]  E. Winer,et al.  TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. , 2020, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  F. Feng,et al.  Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study , 2020, Clinical Cancer Research.

[6]  J. Martens,et al.  Pan-cancer landscape of homologous recombination deficiency , 2020, Nature Communications.

[7]  Icgc,et al.  Pan-cancer analysis of whole genomes , 2017, bioRxiv.

[8]  Z. Szallasi,et al.  Correlation of homologous recombination deficiency induced mutational signatures with sensitivity to PARP inhibitors and cytotoxic agents , 2019, Genome Biology.

[9]  S. Sleijfer,et al.  The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies , 2019, Nature Genetics.

[10]  J. Reis-Filho,et al.  The Landscape of Somatic Genetic Alterations in Breast Cancers from CHEK2 Germline Mutation Carriers , 2019, JNCI cancer spectrum.

[11]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[12]  S. Sleijfer,et al.  Pan-cancer whole genome analyses of metastatic solid tumors , 2018, bioRxiv.

[13]  Rui Bi,et al.  The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers. , 2018, Journal of the National Cancer Institute.

[14]  Anneke A. vd Wurff,et al.  Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons , 2018, BMC Bioinformatics.

[15]  B. Taylor,et al.  Genome doubling shapes the evolution and prognosis of advanced cancers , 2018, Nature Genetics.

[16]  M. Stratton,et al.  Universal Patterns of Selection in Cancer and Somatic Tissues , 2018, Cell.

[17]  Peter J. Park,et al.  Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing , 2018, bioRxiv.

[18]  M. Look,et al.  IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer , 2018, Oncogene.

[19]  R. Verhaak,et al.  The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations , 2017, bioRxiv.

[20]  E. Cuppen,et al.  MutationalPatterns: comprehensive genome-wide analysis of mutational processes , 2017, bioRxiv.

[21]  E. Lander,et al.  A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer , 2017, Nature Genetics.

[22]  E. Birney,et al.  HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures , 2017, Nature Medicine.

[23]  Michael Jones,et al.  Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  E. Birney,et al.  Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration , 2016, Nature Communications.

[25]  J. Foekens,et al.  The 29.5 kb APOBEC3B Deletion Polymorphism Is Not Associated with Clinical Outcome of Breast Cancer , 2016, PloS one.

[26]  V. Seshan,et al.  FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing , 2016, Nucleic acids research.

[27]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[28]  J. Martens,et al.  Genomic profiling of CHEK2*1100delC-mutated breast carcinomas , 2015, BMC Cancer.

[29]  A. Sieuwerts,et al.  Sensitivity to systemic therapy for metastatic breast cancer in CHEK2 1100delC mutation carriers , 2015, Journal of Cancer Research and Clinical Oncology.

[30]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[31]  D. Delia,et al.  CHK2 kinase in the DNA damage response and beyond , 2014, Journal of molecular cell biology.

[32]  A Hollestelle,et al.  Survival and contralateral breast cancer in CHEK2 1100delC breast cancer patients: impact of adjuvant chemotherapy , 2014, British Journal of Cancer.

[33]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[34]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[35]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[36]  S. Cross,et al.  CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[38]  J. Lubiński,et al.  Different CHEK2 germline mutations are associated with distinct immunophenotypic molecular subtypes of breast cancer , 2012, Breast Cancer Research and Treatment.

[39]  J. Foekens,et al.  Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes , 2012, Breast Cancer Research and Treatment.

[40]  D. Greco,et al.  Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications , 2011, Breast Cancer Research.

[41]  M. Yin,et al.  Mice with the CHEK2*1100delC SNP are predisposed to cancer with a strong gender bias , 2009, Proceedings of the National Academy of Sciences.

[42]  Noriaki Ohuchi,et al.  Prediction of breast cancer prognosis by gene expression profile of TP53 status , 2008, Cancer science.

[43]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[44]  M. Yin,et al.  The breast cancer susceptibility allele CHEK2*1100delC promotes genomic instability in a knock-in mouse model. , 2007, Mutation research.

[45]  J. Peterse,et al.  Breast cancer survival and tumor characteristics in premenopausal women carrying the CHEK2*1100delC germline mutation. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[46]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[47]  Jiandong Chen,et al.  MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation , 2005, The EMBO journal.

[48]  M. Schutte,et al.  Tumour characteristics and prognosis of breast cancer patients carrying the germline CHEK2*1100delC variant , 2004, Journal of Medical Genetics.

[49]  Nazneen Rahman,et al.  CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. , 2004, American journal of human genetics.

[50]  J. Klijn,et al.  Excess Risk for Contralateral Breast Cancer in CHEK2*1100delC Germline Mutation Carriers , 2004, Breast Cancer Research and Treatment.

[51]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[52]  R. Eeles,et al.  Increasing evidence that germline mutations in CHEK2 do not cause Li‐Fraumeni syndrome , 2002, Human mutation.

[53]  E. Appella,et al.  Chk2‐deficient mice exhibit radioresistance and defective p53‐mediated transcription , 2002, The EMBO journal.

[54]  P. Jeggo,et al.  Chk2 Is a Tumor Suppressor That Regulates Apoptosis in both an Ataxia Telangiectasia Mutated (ATM)-Dependent and an ATM-Independent Manner , 2002, Molecular and Cellular Biology.

[55]  O. Kallioniemi,et al.  A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. , 2002, American journal of human genetics.

[56]  Nazneen Rahman,et al.  Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations , 2002, Nature Genetics.

[57]  R. Vossen,et al.  Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. , 2000, Cancer research.

[58]  S. Elledge,et al.  DNA damage-induced activation of p53 by the checkpoint kinase Chk2. , 2000, Science.

[59]  K. Isselbacher,et al.  Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. , 1999, Science.

[60]  L. Holmberg,et al.  The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. , 1996, Journal of the National Cancer Institute.

[61]  K. Heimdal,et al.  Prognostic significance of TP53 alterations in breast carcinoma. , 1993, British Journal of Cancer.

[62]  A. Craft,et al.  p53 germline mutations in Li-Fraumeni syndrome , 1991, The Lancet.

[63]  W. Blattner,et al.  Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome , 1990, Nature.