Optimization of the Number of Burner Nozzles in a Hot Blast Stove by the Way of Simulation

The structure of the burner nozzles in a blast furnace hot stove including their number, location, and angle has a vital effect on the flow field, temperature distribution, combustion efficiency, etc. In this article, simulation models were established for the hot stove located at Shougang Qianan. The $$ k{-}\varepsilon $$k-ε model, eddy dissipation model, and P-1 model were used for the modeling of turbulence, combustion, and radiative heat transfer, respectively. The effect of different number of burner nozzles on the flow field and temperature distribution in the combustion chamber was investigated. The results indicated that 19 or 21 burner nozzles were preferred to obtain the optimum flow field and temperature distribution.