Solving asymmetric variational inequalities via convex optimization

Using duality, we reformulate the asymmetric variational inequality (VI) problem over a conic region as an optimization problem. We give sufficient conditions for the convexity of this reformulation. We thereby identify a class of VIs that includes monotone affine VIs over polyhedra, which may be solved by commercial optimization solvers.

[1]  G. Stampacchia,et al.  Convex programming and variational inequalities , 1972 .

[2]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[3]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[4]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[5]  Giles Auchmuty Variational principles for variational inequalities , 1989 .

[6]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[7]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[8]  J H Wu INTERIOR POINT ALGORITHMS FOR SOME MONOTONE VARIATIONAL INEQUALITY PROBLEMS , 1993 .

[9]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[10]  Patrick T. Harker,et al.  A polynomial-time algorithm for affine variational inequalities , 1991 .

[11]  P. Tseng Global linear convergence of a path-following algorithm for some monotone variational inequality problems , 1992 .

[12]  J. Hammond Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms , 1984 .

[13]  Aldo Ghizzetti,et al.  Theory and applications of monotone operators , 1970 .

[14]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[15]  Jie Sun,et al.  Global Linear and Local Quadratic Convergence of a Long-Step Adaptive-Mode Interior Point Method for Some Monotone Variational Inequality Problems , 1998, SIAM J. Optim..

[16]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[17]  J. H. Wu Long-Step Primal Path-Following Algorithm for Monotone Variational Inequality Problems , 1998 .

[18]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[19]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[20]  Christian Kanzow,et al.  Complementarity And Related Problems: A Survey , 1998 .

[21]  Michele Leslie Aghassi,et al.  Robust optimization, game theory, and variational inequalities , 2005 .

[22]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[23]  M. Patriksson Nonlinear Programming and Variational Inequality Problems: A Unified Approach , 1998 .

[24]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[25]  Hans-Jakob Lüthi,et al.  On the Solution of Variational Inequalities by the Ellipsoid Method , 1985, Math. Oper. Res..

[26]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[27]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[28]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[29]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[30]  Jie Sun,et al.  Quadratic Convergence of a Long-Step Interior-Point Method for Nonlinear Monotone Variational Inequality Problems , 1998 .

[31]  Georgia Perakis,et al.  A unifying geometric solution framework and complexity analysis for variational inequalities , 1995, Math. Program..