A robust optimization approach to model supply and demand uncertainties in inventory systems

Abstract In this article, we simultaneously consider supply and demand uncertainties in a robust optimization (RO) framework. First, we apply the RO approach to a multi-period, single-station inventory problem where supply uncertainty is modeled by partial supply. Our main finding is that solving the robust counterpart is equivalent to solving a nominal problem with a modified deterministic demand sequence. In particular, in the stationary case the optimal robust policy follows the quasi-(s, S) form and the corresponding s and S levels are theoretically computable. Subsequently, the RO framework is extended to a multi-echelon case. We show that for a tree structure network, decomposition applies so that the optimal single-station robust policy remains valid for each echelon in the tree. We conduct extensive numerical studies to demonstrate the effectiveness of the proposed robust policies. Our results suggest that significant cost benefits can be realized by incorporating both supply and demand uncertainties.

[1]  Fernando Ordóñez,et al.  Robust capacity expansion of network flows , 2007, Networks.

[2]  Boaz Golany,et al.  Robust multi-echelon multi-period inventory control , 2009, Eur. J. Oper. Res..

[3]  Jack C. Hayya,et al.  An Inventory Model with Order Crossover , 1998, Oper. Res..

[4]  M. Parlar,et al.  Future supply uncertainty in EOQ models , 1991 .

[5]  Pablo A. Parrilo,et al.  A Hierarchy of Near-Optimal Policies for Multistage Adaptive Optimization , 2011, IEEE Transactions on Automatic Control.

[6]  Aurélie Thiele,et al.  A note on issues of over-conservatism in robust optimization with cost uncertainty , 2010 .

[7]  Sergio Maturana,et al.  A robust optimization approach to wine grape harvesting scheduling , 2010, Eur. J. Oper. Res..

[8]  Xiaoqiang Cai,et al.  Robust optimal policies of production and inventory with uncertain returns and demand , 2011 .

[9]  Melvyn Sim,et al.  Robust Approximation to Multiperiod Inventory Management , 2010, Oper. Res..

[10]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[11]  Dimitris Bertsimas,et al.  Robust multiperiod portfolio management in the presence of transaction costs , 2008, Comput. Oper. Res..

[12]  Gilbert Laporte,et al.  The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty , 2016, Manag. Sci..

[13]  Reinaldo Morabito,et al.  Production planning in furniture settings via robust optimization , 2012, Comput. Oper. Res..

[14]  Tao Yao,et al.  Robust inventory control under demand and lead time uncertainty , 2017, Ann. Oper. Res..

[15]  Ben-Tal Aharon,et al.  Robust multi-echelon multi-period inventory control , 2009 .

[16]  Rodrigo Pascual,et al.  Scheduling production for a sawmill: A robust optimization approach , 2014 .

[17]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..

[18]  Hau L. Lee,et al.  Lot Sizing with Random Yields: A Review , 1995, Oper. Res..

[19]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[20]  Daniel Bienstock,et al.  Computing robust basestock levels , 2008, Discret. Optim..

[21]  Pablo A. Parrilo,et al.  Optimality of Affine Policies in Multistage Robust Optimization , 2009, Math. Oper. Res..

[22]  Jomon Aliyas Paul,et al.  Robust optimization for United States Department of Agriculture food aid bid allocations , 2015 .

[23]  Paul H. Zipkin,et al.  Foundations of Inventory Management , 2000 .

[24]  T. Morton,et al.  A periodic review, production planning model with uncertain capacity and uncertain demand—optimality of extended myopic policies , 1994 .

[25]  M. Parlar,et al.  Periodic Review Production Models With Variable Yield And Uncertain Demand , 1988 .

[26]  Pablo A. Parrilo,et al.  Optimality of affine policies in multi-stage robust optimization , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[27]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[28]  Kaan Ozbay,et al.  Stochastic Humanitarian Inventory Control Model for Disaster Planning , 2007 .

[29]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[30]  Jorge R. Vera,et al.  Application of Robust Optimization to the Sawmill Planning Problem , 2014, Ann. Oper. Res..

[31]  F. Ordóñez,et al.  Robust capacity expansion of network flows , 2007 .

[32]  Boaz Golany,et al.  Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach , 2005, Manuf. Serv. Oper. Manag..

[33]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[34]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[35]  A. Thiele Single-Product Pricing via Robust Optimization , 2006 .

[36]  Cécile Murat,et al.  Recent advances in robust optimization: An overview , 2014, Eur. J. Oper. Res..

[37]  Tarik Aouam,et al.  Integrated production planning and order acceptance under uncertainty: A robust optimization approach , 2013, Eur. J. Oper. Res..

[38]  Herbert E. Scarf,et al.  Optimal Policies for a Multi-Echelon Inventory Problem , 1960, Manag. Sci..