Evaluation of the Linear Matrix Equation Solvers in SLICOT

We discuss solvers for Sylvester, Lyapunov, and Stein equations that are available in the SLICOT Library (Subroutine Library In COntrol Theory). These solvers oer improved eciency , reliability, and functionality compared to corresponding solvers in other computer-aided control system design packages. The performance of the SLICOT solvers is compared with the corresponding Matlab solvers. This note can also serve as a guide to the SLICOT and SLICOT-based Matlab solvers for Linear Matrix Equations. c 2007 European Society of Computational Methods in Sciences and Engineering

[1]  Wayne H. Enright,et al.  Improving the Efficiency of Matrix Operations in the Numerical Solution of Stiff Ordinary Differential Equations , 1978, TOMS.

[2]  Sabine Van Huffel,et al.  Efficient and reliable algorithms for condition estimation of Lyapunov and Riccati equations , 2000 .

[3]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[4]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[5]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[6]  Jack J. Dongarra,et al.  Algorithm 679: A set of level 3 basic linear algebra subprograms: model implementation and test programs , 1990, TOMS.

[7]  Alan J. Laub,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[8]  Michael A. Epton Methods for the solution ofAXD−BXC=E and its application in the numerical solution of implicit ordinary differential equations , 1980 .

[9]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[10]  S. Van Huffel,et al.  SLICOT and control systems numerical software packages , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[11]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[12]  Peter Benner,et al.  Computational Methods for Linear-Quadratic Optimization , 1999 .

[13]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[14]  Claude Gomez,et al.  Engineering and Scientific Computing with Scilab , 1998 .

[15]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[16]  Alan J. Laub,et al.  Algorithm 705; a FORTRAN-77 software package for solving the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[17]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[18]  A. Varga A note on Hammarling's algorithm for the discrete Lyapunov equation , 1990 .

[19]  Daniel Boley,et al.  Numerical Methods for Linear Control Systems , 1994 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[22]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[23]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[24]  Bo Kågström,et al.  LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs , 1994, TOMS.

[25]  Jack J. Dongarra,et al.  Algorithm 656: an extended set of basic linear algebra subprograms: model implementation and test programs , 1988, TOMS.

[26]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[27]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[28]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[29]  A. Barraud A numerical algorithm to solve AT X A - X = Q , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[30]  Jack J. Dongarra,et al.  An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.

[31]  Daniel Kressner,et al.  CTLEX - a Collection of Benchmark Examples for Continuous-Time Lyapunov Equations , 1999 .

[32]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[33]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .