Preconditioning Mixed Finite Element Saddle‐point Elliptic Problems

[1]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[2]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[3]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[4]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[5]  Tamir Tassa,et al.  The convergence rate of Godunov type schemes , 1994 .

[6]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[7]  R. Chandra Conjugate gradient methods for partial differential equations. , 1978 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  J. Wang,et al.  Analysis of multilevel decomposition iterative methods for mixed finite element methods , 1994 .

[10]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[11]  P. Vassilevski,et al.  Preconditioning indefinite systems arising from mixed finite element discretization of second-order elliptic problems , 1991 .

[12]  J. Wang,et al.  Analysis of the Schwarz algorithm for mixed finite elements methods , 1992 .

[13]  I. Gustafsson,et al.  Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .

[14]  O. Axelsson Preconditioning of Indefinite Problems by Regularization , 1979 .

[15]  R. Verfürth A combined conjugate gradient - multi-grid algorithm for the numerical solution of the Stokes problem , 1984 .

[16]  T. Manteuffel,et al.  Adaptive polynomial preconditioning for hermitian indefinite linear systems , 1989 .

[17]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[18]  R. Bank,et al.  A class of iterative methods for solving saddle point problems , 1989 .

[19]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[20]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[21]  P. Vassilevski,et al.  Multilevel iterative methods for mixed finite element discretizations of elliptic problems , 1992 .

[22]  W. Queck The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type , 1989 .

[23]  P. Vassilevski Hybrid V-cycle algebraic multilevel preconditioners , 1992 .

[24]  R. Freund On polynomial preconditioning and asymptotic convergence factors for indefinite Hermitian matrices , 1991 .

[25]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[26]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[27]  O. Axelsson NUMERICAL ALGORITHMS FOR INDEFINITE PROBLEMS , 1984 .