Robust partial residuals estimation in semiparametric partially linear model

Abstract This paper presents a robust version of partial residuals technique to estimate parametric and nonparametric components in semiparametric partially linear model. The robust estimation of the parametric component is constructed by using an M-estimation after eliminating the effect of the nonparametric component on both the response and covariates based on the pseudo data. Finally, the nonparametric component is estimated robustly by using the residuals from the obtained M-estimation of the parametric component. Simulation studies and a real data analysis illustrate that the proposed estimator performs better than the existing estimations when outliers in the dataset or errors with heavy tails.

[1]  Adonis Yatchew,et al.  Semiparametric Regression for the Applied Econometrician: References , 2003 .

[2]  S. Babaie-Kafaki,et al.  Extended least trimmed squares estimator in semiparametric regression models with correlated errors , 2016 .

[3]  J. Powell,et al.  Semiparametric estimation of censored selection models with a nonparametric selection mechanism , 1993 .

[4]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[5]  D. Poirier,et al.  Semiparametric Bayesian inference in multiple equation models , 2005 .

[6]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[7]  T. Tony Cai,et al.  A difference based approach to the semiparametric partial linear model , 2011 .

[8]  Terri L. Moore,et al.  Regression Analysis by Example , 2001, Technometrics.

[9]  Adonis Yatchew,et al.  Scale economies in electricity distribution: a semiparametric analysis , 2000 .

[10]  N. Balakrishna,et al.  Communications in Statistics-Theory and Methods , 2012 .

[11]  Douglas W. Nychka,et al.  The Role of Pseudo Data for Robust Smoothing with Application to Wavelet Regression , 2007 .

[12]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[13]  Hee-Seok Oh,et al.  Robust penalized regression spline fitting with application to additive mixed modeling , 2007, Comput. Stat..

[14]  D. Cox Asymptotics for $M$-Type Smoothing Splines , 1983 .

[15]  Asuman Turkmen,et al.  Outlier Resistant Estimation in Difference-Based Semiparametric Partially Linear Models , 2015, Commun. Stat. Simul. Comput..

[16]  Fikri Akdeniz,et al.  Restricted Ridge Estimators of the Parameters in Semiparametric Regression Model , 2009 .

[17]  S. Ejaz Ahmed,et al.  Absolute penalty and shrinkage estimation in partially linear models , 2012, Comput. Stat. Data Anal..

[18]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[19]  Ana Bianco,et al.  Robust estimators in semiparametric partly linear regression models , 2004 .

[20]  Jack Cuzick,et al.  Efficient Estimates in Semiparametric Additive Regression Models with Unknown Error Distribution , 1992 .

[21]  Hung Chen,et al.  A two-stage spline smoothing method for partially linear models , 1991 .

[22]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[23]  E. Raheem Absolute Penalty and Shrinkage Estimation Strategies in Linear and Partially Linear Models , 2012 .

[24]  Xuming He,et al.  Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .

[25]  D. Poirier,et al.  Bayesian Semiparametric Inference in Multiple Equation Models , 2003 .

[26]  Clive W. J. Granger,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[27]  Adonis Yatchew,et al.  An elementary estimator of the partial linear model , 1997 .

[28]  M. Amini,et al.  Least trimmed squares ridge estimation in partially linear regression models , 2016 .

[29]  Chuan-hua Wei,et al.  Principal components regression estimator of the parameters in partially linear models , 2016 .

[30]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[31]  W. Wong,et al.  Profile Likelihood and Conditionally Parametric Models , 1992 .

[32]  Young K. Truong,et al.  Local Linear Estimation in Partly Linear Models , 1997 .

[33]  Wolfgang K. Härdle,et al.  Difference Based Ridge and Liu Type Estimators in Semiparametric Regression Models , 2011, J. Multivar. Anal..

[34]  David Ruppert,et al.  Theory & Methods: Spatially‐adaptive Penalties for Spline Fitting , 2000 .

[35]  Xiao-Wen Chang,et al.  Wavelet estimation of partially linear models , 2004, Comput. Stat. Data Anal..

[36]  Fabio Trojani,et al.  Semiparametric Regression for the Applied Econometrician , 2006 .

[37]  Elvezio Ronchetti,et al.  Resistant selection of the smoothing parameter for smoothing splines , 2001, Stat. Comput..

[38]  J. Rice Convergence rates for partially splined models , 1986 .

[39]  E. Bullmore,et al.  Penalized partially linear models using sparse representations with an application to fMRI time series , 2005, IEEE Transactions on Signal Processing.

[40]  M. Arashi,et al.  Least-trimmed squares: asymptotic normality of robust estimator in semiparametric regression models , 2017 .

[41]  François G. Meyer Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series , 2003, IEEE Transactions on Medical Imaging.

[42]  Nancy E. Heckman,et al.  Spline Smoothing in a Partly Linear Model , 1986 .

[43]  Hongchang Hu Ridge estimation of a semiparametric regression model , 2005 .

[44]  Mohammad Arashi,et al.  New Ridge Regression Estimator in Semiparametric Regression Models , 2016, Commun. Stat. Simul. Comput..