A numerical algorithm for the evaluation of Weber parabolic cylinder functions U(a,x), V(a,x), and W(a, ±x)☆

[1]  Jeff R. Cash,et al.  On an Iterative Approach to the Numerical Solution of Difference Schemes , 1979, Comput. J..

[2]  F. Olver,et al.  Asymptotic approximations for parabolic cylinder functions , 1978 .

[3]  J. H. Weiner Quantum rate theory for a symmetric double‐well potential , 1978 .

[4]  D. Crothers Semiclassical strong-coupling parabolic connection formulae , 1976 .

[5]  R. Redding,et al.  On the calculation of the parabolic cylinder functions. II. the function V(a, x)☆ , 1976 .

[6]  F. Olver,et al.  Second-order linear differential equations with two turning points , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  R. Redding,et al.  On the calculation of the parabolic cylinder functions , 1974 .

[8]  M. Child On the stueckelberg formula for non-adiabatic transitions , 1974 .

[9]  R. Bieniek Semi-classical uniform approximation in Penning ionization , 1974 .

[10]  F. Olver Asymptotics and Special Functions , 1974 .

[11]  R. Redding Avoided crossings in diatomic molecule bound states: Model calculations for coupled harmonic oscillators , 1974 .

[12]  M. J. Richardson Approximate solutions to the one-dimensional Schroedinger equation by the method of comparison equations , 1973 .

[13]  J. Heading The approximate use of the complex gamma function in some wave propagation problems , 1973 .

[14]  W. Hecht An analytic approximation method for the one‐dimensional Schrödinger equation.II , 1972 .

[15]  Roy G. Gordon,et al.  New Method for Constructing Wavefunctions for Bound States and Scattering , 1969 .

[16]  F. W. J. Olver,et al.  Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders , 1959 .

[17]  A. Fletcher,et al.  Tables of Weber Parabolic Cylinder Functions , 1957 .

[18]  R. H. Good,et al.  A WKB-Type Approximation to the Schrödinger Equation , 1953 .

[19]  Ueber die Integration der partiellen Differentialgleichung: $$\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }} + k^2 u = 0.$$ , 1869 .