Investigating the performance of an adiabatic quantum optimization processor

Adiabatic quantum optimization offers a new method for solving hard optimization problems. In this paper we calculate median adiabatic times (in seconds) determined by the minimum gap during the adiabatic quantum optimization for an NP-hard Ising spin glass instance class with up to 128 binary variables. Using parameters obtained from a realistic superconducting adiabatic quantum processor, we extract the minimum gap and matrix elements using high performance Quantum Monte Carlo simulations on a large-scale Internet-based computing platform. We compare the median adiabatic times with the median running times of two classical solvers and find that, for the considered problem sizes, the adiabatic times for the simulated processor architecture are about 4 and 6 orders of magnitude shorter than the two classical solvers’ times. This shows that if the adiabatic time scale were to determine the computation time, adiabatic quantum optimization would be significantly superior to those classical solvers for median spin glass problems of at least up to 128 qubits. We also discuss important additional constraints that affect the performance of a realistic system.

[1]  M. Suzuki,et al.  Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .

[4]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[5]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[6]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[7]  Sorin Istrail,et al.  Statistical Mechanics, Three-Dimensionality and NP-Completeness: I. Universality of Intractability of the Partition Functions of the Ising Model Across Non-Planar Lattices , 2000, STOC 2000.

[8]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[9]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[10]  Rina Dechter,et al.  A general scheme for automatic generation of search heuristics from specification dependencies , 2001, Artif. Intell..

[11]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[12]  Fabio Gagliardi Cozman,et al.  Bucket-Tree Elimination for Automated Reasoning , 2001 .

[13]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[14]  Edward Farhi,et al.  Finding cliques by quantum adiabatic evolution , 2002, Quantum Inf. Comput..

[15]  David P. Anderson,et al.  BOINC: a system for public-resource computing and storage , 2004, Fifth IEEE/ACM International Workshop on Grid Computing.

[16]  N. Cerf,et al.  Noise resistance of adiabatic quantum computation using random matrix theory , 2004, quant-ph/0409127.

[17]  F. Nori,et al.  Decoherence in a scalable adiabatic quantum computer , 2006, quant-ph/0608212.

[18]  Matthias Troyer,et al.  Feedback-optimized parallel tempering , 2006 .

[19]  Matthias Troyer,et al.  Feedback-optimized parallel tempering Monte Carlo , 2006, cond-mat/0602085.

[20]  M. Tiersch,et al.  Non-markovian decoherence in the adiabatic quantum search algorithm , 2006, quant-ph/0608123.

[21]  M. Amin,et al.  LANDAU-ZENER TRANSITIONS IN THE PRESENCE OF SPIN ENVIRONMENT , 2007, cond-mat/0703085.

[22]  D. Averin,et al.  Macroscopic resonant tunneling in the presence of low frequency noise. , 2007, Physical review letters.

[23]  P. Love,et al.  Thermally assisted adiabatic quantum computation. , 2006, Physical review letters.

[24]  M. Amin,et al.  Effect of local minima on adiabatic quantum optimization. , 2007, Physical review letters.

[25]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[26]  A. Young,et al.  Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.

[27]  M. W. Johnson,et al.  Compound Josephson-junction coupler for flux qubits with minimal crosstalk , 2009, 0904.3784.

[28]  M. W. Johnson,et al.  Synchronization of multiple coupled rf-SQUID flux qubits , 2009, 0903.1884.

[29]  D. Averin,et al.  Role of single-qubit decoherence time in adiabatic quantum computation , 2008, 0803.1196.

[30]  M. W. Johnson,et al.  Geometrical dependence of the low-frequency noise in superconducting flux qubits , 2008, 0812.0378.

[31]  Firas Hamze,et al.  Robust Parameter Selection for Parallel Tempering , 2010 .

[32]  M. W. Johnson,et al.  A scalable control system for a superconducting adiabatic quantum optimization processor , 2009, 0907.3757.

[33]  M. W. Johnson,et al.  Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.

[34]  A. Young,et al.  First-order phase transition in the quantum adiabatic algorithm. , 2009, Physical review letters.

[35]  Firas Hamze,et al.  High-performance Physics Simulations Using Multi-core CPUs and GPGPUs in a Volunteer Computing Context , 2011, Int. J. High Perform. Comput. Appl..