Engineered piezoelectricity in graphene.

We discover that piezoelectric effects can be engineered into nonpiezoelectric graphene through the selective surface adsorption of atoms. Our calculations show that doping a single sheet of graphene with atoms on one side results in the generation of piezoelectricity by breaking inversion symmetry. Despite their 2D nature, piezoelectric magnitudes are found to be comparable to those in 3D piezoelectric materials. Our results elucidate a designer piezoelectric phenomenon, unique to the nanoscale, that has potential to bring dynamical control to nanoscale electromechanical devices.

[1]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[2]  Ben L. Feringa,et al.  Unidirectional molecular motor on a gold surface , 2005, Nature.

[3]  D. Berlincourt,et al.  Piezoelectric transducer materials , 1965 .

[4]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[5]  Maria Prudenziati,et al.  Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films , 1992 .

[6]  Aristides A. G. Requicha Nanorobots, NEMS, and nanoassembly , 2003 .

[7]  K. Michel,et al.  Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride , 2011 .

[8]  Zhenhua Ni,et al.  Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect , 2008 .

[9]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[10]  B. Hammer,et al.  Bandgap opening in graphene induced by patterned hydrogen adsorption. , 2010, Nature materials.

[11]  M. Caragiu,et al.  Alkali metal adsorption on graphite: a review , 2005 .

[12]  A. Zettl,et al.  Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.

[13]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[14]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[15]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[16]  F. Guinea,et al.  Pseudomagnetic fields and ballistic transport in a suspended graphene sheet. , 2008, Physical review letters.

[17]  J. Robinson,et al.  Properties of fluorinated graphene films. , 2010, Nano letters.

[18]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[19]  R. Resta,et al.  External Fields in the Self-Consistent Theory of Electronic States: A New Method for Direct Evaluation of Macroscopic and Microscopic Dielectric Response , 1983 .

[20]  M. I. Katsnelson,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2010 .

[21]  Seung-Hoon Jhi,et al.  Crossover in the adsorption properties of alkali metals on graphene , 2010 .

[22]  M. Hossain,et al.  Quantum conductance modulation in graphene by strain engineering , 2010 .

[23]  Horacio D Espinosa,et al.  Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. , 2011, Nano letters.

[24]  C. N. Lau,et al.  Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2. , 2009, Nano letters.

[25]  Anders Nilsson,et al.  Photoemission study of K on graphite , 1999 .

[26]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[27]  S. Lebègue,et al.  Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements , 2010, 1001.3829.

[28]  G. Bacon THE INTERLAYER SPACING OF GRAPHITE , 1951 .

[29]  Neha Sharma,et al.  On the possibility of piezoelectric nanocomposites without using piezoelectric materials , 2007 .

[30]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[31]  Ji Won Suk,et al.  Graphene-based actuators. , 2010, Small.

[32]  I. Vasiliev,et al.  Ab initio study of K adsorption on graphene and carbon nanotubes : Role of long-range ionic forces , 2007 .

[33]  Uwe Rossow,et al.  Composition dependence of polarization fields in GaInN/GaN quantum wells , 2003 .

[34]  A. H. Castro Neto,et al.  Strain engineering of graphene's electronic structure. , 2009, Physical review letters.

[35]  G. Barber,et al.  Graphane: a two-dimensional hydrocarbon , 2006, cond-mat/0606704.

[36]  E. Williams,et al.  Charged Impurity Scattering in Graphene , 2007, 0708.2408.

[37]  V. Kravets,et al.  Fluorographene: a two-dimensional counterpart of Teflon. , 2010, Small.

[38]  Lars Österlund,et al.  Potassium adsorption on graphite(0001) , 1999 .

[39]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[40]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[41]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[42]  A. Zakharov,et al.  Epitaxial graphene on 6H-SiC and Li intercalation , 2010 .

[43]  F. Guinea,et al.  Effect of external conditions on the structure of scrolled graphene edges , 2010, 1002.3418.

[44]  Marvin L. Cohen,et al.  First-principles study of metal adatom adsorption on graphene , 2008 .

[45]  M. Bode,et al.  Patterning graphene at the nanometer scale via hydrogen desorption. , 2009, Nano letters.

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  N. M. R. Peres,et al.  Tight-binding approach to uniaxial strain in graphene , 2008, 0811.4396.

[48]  K. Michel,et al.  Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride , 2009 .

[49]  Roya Maboudian,et al.  Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). , 2008, Physical review letters.

[50]  H. Craighead Nanoelectromechanical systems. , 2000, Science.

[51]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[52]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[53]  Microscopic theory for nanotube piezoelectricity , 2003, cond-mat/0308583.

[54]  Kazuhiro Shimada First-Principles Determination of Piezoelectric Stress and Strain Constants of Wurtzite III–V Nitrides , 2006 .

[55]  T. Yildirim,et al.  Quasi-free methyl rotation in zeolitic imidazolate framework-8. , 2008, The journal of physical chemistry. A.

[56]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[57]  C. N. Lau,et al.  Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. , 2009, Nature nanotechnology.

[58]  A. Ignatiev,et al.  Lithium adsorption on the graphite (0001) surface , 1984 .

[59]  M. Jalil,et al.  Valley filter in strain engineered graphene , 2010, 1005.5088.

[60]  A. Bratkovsky,et al.  Unusual flexoelectric effect in two-dimensional noncentrosymmetric sp2-bonded crystals. , 2009, Physical review letters.

[61]  J. Tour,et al.  Directional control in thermally driven single-molecule nanocars. , 2005, Nano letters.

[62]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[63]  O. L. Blakslee,et al.  Elastic Constants of Compression-Annealed Pyrolytic Graphite , 1970 .

[64]  S. Muensit,et al.  Extensional piezoelectric coefficients of gallium nitride and aluminum nitride , 1999 .

[65]  M. Schlüter,et al.  Relativistic norm-conserving pseudopotentials , 1982 .