Amplitude matching strategy for wave-optical design of monofunctional systems

Abstract The design of optical systems capable of transforming one given input field into an output field which maximizes one prescribed merit function is discussed in the functional embodiment of the system, that is by dealing with transmission functions instead of structured matter. Customary beam shaping techniques are identified as a special case of a more general strategy which is called amplitude matching. This strategy makes use of the field quantities amplitude and phase and therefore it is a wave-optical design approach. The flexibility of the technique is demonstrated by various examples. Parameters like conversion efficiency, signal-to-noise ratio, distances between transmission functions, and the number of transmission functions necessary for the implementation of wave transformations are discussed.

[1]  G. V. Uspleniev,et al.  Investigation of computer-generated diffractive beam shapers for flattening of single-modal CO(2) laser beams. , 1995, Applied optics.

[2]  P H Malyak Two-mirror unobscured optical system for reshaping the irradiance distribution of a laser beam. , 1992, Applied optics.

[3]  B Dong,et al.  General theory for performing an optical transform. , 1986, Applied optics.

[4]  Wilfrid B. Veldkamp,et al.  Laser beam profile shaping with binary diffraction gratings (A) , 1981 .

[5]  B. Dong,et al.  Diffractive phase elements for beam shaping: a new design method. , 1995, Applied optics.

[6]  N. C. Gallagher,et al.  Optimum Fourier-transform division filters with magnitude constraint , 1974 .

[7]  Frank Wyrowski,et al.  Consequence of illumination wave on optical function of non-periodic diffractive elements , 1994 .

[8]  M. Taghizadeh,et al.  Bragg holograms with binary synthetic surface-relief profile. , 1993, Optics letters.

[9]  W. H. Lee,et al.  Binary synthetic holograms. , 1974, Applied optics.

[10]  M T Eismann,et al.  Iterative design of a holographic beamformer. , 1989, Applied optics.

[11]  Louis A. Romero,et al.  Lossless laser beam shaping , 1996 .

[12]  J. Allebach,et al.  Minimax spectrum shaping with a bandwidth constraint. , 1975, Applied optics.

[13]  E G Churin,et al.  Diffraction-limited laser beam shaping by use of computer-generated holograms with dislocations. , 1999, Optics letters.

[14]  S. Heinemann Computer generated beam shaping and focusing optical elements for laser material processing , 1995 .

[15]  N C Roberts Beam shaping by holographic filters. , 1989, Applied optics.

[16]  Johannes Schwider,et al.  Design and fabrication of computer-generated beam-shaping holograms. , 1996, Applied optics.

[17]  D. Campbell,et al.  CO(2) laser beam shaping with computer generated holograms. , 1976, Applied optics.

[18]  Olof Bryngdahl,et al.  Optical map transformations , 1974 .

[19]  W Singer,et al.  Born approximation for the nonparaxial scalar treatment of thick phase gratings. , 1998, Applied optics.

[20]  O. Bryngdahl,et al.  Diffusers in digital holography , 1991 .

[21]  Frank Wyrowski,et al.  Synthesis of paraxial-domain diffractive elements by rigorous electromagnetic theory , 1995 .

[22]  J. Goodman Introduction to Fourier optics , 1969 .

[23]  N. C. Gallagher,et al.  Method for Computing Kinoforms that Reduces Image Reconstruction Error. , 1973, Applied optics.

[24]  Frank Wyrowski,et al.  Analytical beam shaping with application to laser-diode arrays , 1997 .

[25]  Frank Wyrowski,et al.  Diffractive Optics for Industrial and Commercial Applications , 1997 .

[26]  O. Bryngdahl,et al.  Computer holography: Object dependent deterministic diffusers , 1987 .

[27]  O. Bryngdahl,et al.  Digital holography as part of diffractive optics , 1991 .

[28]  Wai-Hon Lee Method for converting a Gaussian laser beam into a uniform beam , 1981 .

[29]  Emmett N. Leith,et al.  Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects* , 1964 .

[30]  Carl C. Aleksoff,et al.  Holographic conversion of a Gaussian beam to a near-field uniform beam , 1991 .

[31]  W J Dallas,et al.  Deterministic diffusers for holography. , 1973, Applied optics.

[32]  A. B. Vander Lugt,et al.  Signal detection by complex spatial filtering , 1964, IEEE Trans. Inf. Theory.

[33]  A. Lohmann,et al.  Complex spatial filtering with binary masks. , 1966, Applied optics.

[34]  H O Bartelt,et al.  Computer-generated holographic component with optimum light efficiency. , 1984, Applied optics.

[35]  U Krackhardt,et al.  Upper bound on the diffraction efficiency of phase-only fanout elements. , 1992, Applied optics.

[36]  Frank Wyrowski,et al.  Wave-optical structure design with the local plane-interface approximation , 2000 .

[37]  Frank Wyrowski,et al.  Theory of speckles in diffractive optics and its application to beam shaping , 1996 .

[38]  H O Bartelt,et al.  Applications of the tandem component: an element with optimum light efficiency. , 1985, Applied optics.

[39]  Filippus S. Roux,et al.  Intensity distribution transformation for rotationally symmetric beam shaping , 1991 .

[40]  W. Veldkamp,et al.  Laser beam profile shaping with interlaced binary diffraction gratings. , 1982, Applied optics.

[41]  O. Bryngdahl,et al.  Iterative Fourier-transform algorithm applied to computer holography , 1988 .

[42]  Olof Bryngdahl Computer-Generated Holograms as Generalized Optical Components , 1975 .

[43]  Joseph N. Mait,et al.  Understanding diffractive optical design in the scalar domain , 1995, OSA Annual Meeting.

[44]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[45]  K Murata,et al.  Reshaping collimated laser beams with Gaussian profile to uniform profiles. , 1983, Applied optics.

[46]  O. Bryngdahl,et al.  I Digital Holography – Computer-Generated Holograms , 1990 .

[47]  F Wyrowski,et al.  Upper bound of the diffraction efficiency of diffractive phase elements. , 1991, Optics letters.