One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species
暂无分享,去创建一个
[1] Umberto Ravaioli,et al. BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation , 2005 .
[2] M. Saraniti,et al. The Simulation of Ionic Charge Transport in Biological Ion Channels: An Introduction to Numerical Methods , 2006 .
[3] Herbert Steinrück,et al. Asymptotic Analysis of the Current-Voltage Curve of a pnpn Semiconductor Device , 1989 .
[4] Robert S. Eisenberg,et al. Ion flow through narrow membrane channels: part II , 1992 .
[5] Weishi Liu,et al. Exchange Lemmas for Singular Perturbation Problems with Certain Turning Points , 2000 .
[6] Shin-Ho Chung,et al. Proceedings of the Australian Physiological and Pharmacological Society Symposium: Ion Channels PREDICTING CHANNEL FUNCTION FROM CHANNEL STRUCTURE USING BROWNIAN DYNAMICS SIMULATIONS , 2001, Clinical and experimental pharmacology & physiology.
[7] Robert S. Eisenberg,et al. Towards a Reliable Model of Ion Channels: Three-dimensional simulation of ionic solutions , 2002 .
[8] I. Rubinstein,et al. Multiple steady states in one-dimensional electrodiffusion with local electroneutrality , 1987 .
[9] Robert S. Eisenberg,et al. Physical descriptions of experimental selectivity measurements in ion channels , 2002, European Biophysics Journal.
[10] Weishi Liu,et al. Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..
[11] Martin Burger,et al. Identification of doping profiles in semiconductor devices , 2001 .
[12] M. Saraniti,et al. A Poisson P3M Force Field Scheme for Particle-Based Simulations of Ionic Liquids , 2004 .
[13] Christopher K. R. T. Jones,et al. Invariant manifolds and singularly perturbed boundary value problems , 1994 .
[14] R. Eisenberg,et al. From Structure to Function in Open Ionic Channels , 1999, The Journal of Membrane Biology.
[15] Ion Channels as Devices , 2003 .
[16] Bob Eisenberg,et al. Proteins, channels and crowded ions. , 2002, Biophysical chemistry.
[17] C. Chicone. Ordinary Differential Equations with Applications , 1999, Texts in Applied Mathematics.
[18] A. Nitzan,et al. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.
[19] S. Selberherr. Analysis and simulation of semiconductor devices , 1984 .
[20] Isaak Rubinstein. Electro-diffusion of ions , 1987 .
[21] Herbert Steinrück,et al. A bifurcation analysis of the one-dimensional steady-state semiconductor device equations , 1989 .
[22] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[23] Weishi Liu,et al. Geometric Singular Perturbation Approach to Steady-State Poisson--Nernst--Planck Systems , 2005, SIAM J. Appl. Math..
[24] Robert S. Eisenberg,et al. Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .
[25] Mathieu S. Capcarrère,et al. Necessary conditions for density classification by cellular automata. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] Bixiang Wang,et al. Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels , 2009, 0902.4290.
[27] W. Im,et al. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.
[28] M. S. Mock,et al. AN EXAMPLE OF NONUNIQUENESS OF STATIONARY SOLUTIONS IN SEMICONDUCTOR DEVICE MODELS , 1982 .
[29] Joseph W. Jerome,et al. Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study , 1997, SIAM J. Appl. Math..
[30] Christopher K. R. T. Jones,et al. Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .
[31] R. Eisenberg,et al. Charges, currents, and potentials in ionic channels of one conformation. , 1993, Biophysical journal.
[32] Robert S. Eisenberg,et al. Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..
[33] R. Eisenberg. Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.
[34] L. Henderson. The Fitness of the Environment: An Inquiry Into the Biological Significance of the Properties of Matter , 1913 .
[35] J Norbury,et al. Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels , 2008, European Journal of Applied Mathematics.
[36] Joseph W. Jerome,et al. A finite element approximation theory for the drift diffusion semiconductor model , 1991 .
[37] R. S. Eisenberg,et al. Channels as enzymes , 1990, The Journal of Membrane Biology.
[38] J. Chazalviel. Coulomb Screening by Mobile Charges , 1999 .
[39] Christopher K. R. T. Jones,et al. Tracking invariant manifolds up to exponentially small errors , 1996 .
[40] Dirk Gillespie,et al. Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[41] Boaz Nadler,et al. Ionic Diffusion Through Protein Channels: From molecular description to continuum equations , 2003 .
[42] E. W. McDaniel,et al. Transport Properties of Ions in Gases , 1988 .
[43] R. Eisenberg,et al. Modified Donnan potentials for ion transport through biological ion channels. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[44] Olivier Bernard,et al. New perspectives in transport phenomena in electrolytes , 1996 .
[45] B. Eisenberg,et al. Ion Channels as Devices , 2003, Bio-, Micro-, and Nanosystems (IEEE Cat. No.03EX733).
[46] J. Barthel,et al. Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .
[47] Dirk Gillespie,et al. Density functional theory of charged, hard-sphere fluids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[48] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[49] B. Nadler,et al. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[50] B. Eisenberg,et al. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.
[51] David J. Roulston,et al. Bipolar Semiconductor Devices , 1990 .
[52] Uwe Hollerbach,et al. Dielectric boundary force and its crucial role in gramicidin. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[53] Mark H. Holmes,et al. Nonlinear ionic diffusion through charged polymeric gels , 1990 .
[54] Robert S. Eisenberg,et al. Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow Through Gramicidin A , 2002, J. Sci. Comput..
[55] M. Lundstrom. Fundamentals of carrier transport , 1990 .
[56] Nader Masmoudi,et al. Diffusion Limit of a Semiconductor Boltzmann-Poisson System , 2007, SIAM J. Math. Anal..
[57] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[58] Amit Singer,et al. A Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel , 2009, SIAM J. Appl. Math..
[59] Weishi Liu,et al. Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System , 2008, SIAM J. Appl. Dyn. Syst..
[60] Bob Eisenberg,et al. Living Transistors: a Physicist's View of Ion Channels , 2008 .
[61] Martin Burger,et al. Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..