One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species

Abstract The one-dimensional Poisson–Nernst–Planck (PNP) system is a basic model for ion flow through membrane channels. If the Debye length is much smaller than the characteristic radius of the channel, the PNP system can be treated as a singularly perturbed system. We provide a geometric framework for the study of the steady-state PNP system involving multiple types of ion species with multiple regions of piecewise constant permanent charge. Special structures of this particular problem are revealed, which together with the general framework allows one to reduce the existence and multiplicity of singular orbits to a system of nonlinear algebraic equations. Near each singular orbit, an application of the exchange lemma from the geometric singular perturbation theory gives rise to the existence and (local) uniqueness of a solution of the singular boundary value problem. A new phenomenon on multiplicity and spatial behavior of steady-states involving three or more types of ion species is discovered in an example. (The phenomenon cannot occur when only two types of ion species are involved.)

[1]  Umberto Ravaioli,et al.  BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation , 2005 .

[2]  M. Saraniti,et al.  The Simulation of Ionic Charge Transport in Biological Ion Channels: An Introduction to Numerical Methods , 2006 .

[3]  Herbert Steinrück,et al.  Asymptotic Analysis of the Current-Voltage Curve of a pnpn Semiconductor Device , 1989 .

[4]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[5]  Weishi Liu,et al.  Exchange Lemmas for Singular Perturbation Problems with Certain Turning Points , 2000 .

[6]  Shin-Ho Chung,et al.  Proceedings of the Australian Physiological and Pharmacological Society Symposium: Ion Channels PREDICTING CHANNEL FUNCTION FROM CHANNEL STRUCTURE USING BROWNIAN DYNAMICS SIMULATIONS , 2001, Clinical and experimental pharmacology & physiology.

[7]  Robert S. Eisenberg,et al.  Towards a Reliable Model of Ion Channels: Three-dimensional simulation of ionic solutions , 2002 .

[8]  I. Rubinstein,et al.  Multiple steady states in one-dimensional electrodiffusion with local electroneutrality , 1987 .

[9]  Robert S. Eisenberg,et al.  Physical descriptions of experimental selectivity measurements in ion channels , 2002, European Biophysics Journal.

[10]  Weishi Liu,et al.  Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..

[11]  Martin Burger,et al.  Identification of doping profiles in semiconductor devices , 2001 .

[12]  M. Saraniti,et al.  A Poisson P3M Force Field Scheme for Particle-Based Simulations of Ionic Liquids , 2004 .

[13]  Christopher K. R. T. Jones,et al.  Invariant manifolds and singularly perturbed boundary value problems , 1994 .

[14]  R. Eisenberg,et al.  From Structure to Function in Open Ionic Channels , 1999, The Journal of Membrane Biology.

[15]  Ion Channels as Devices , 2003 .

[16]  Bob Eisenberg,et al.  Proteins, channels and crowded ions. , 2002, Biophysical chemistry.

[17]  C. Chicone Ordinary Differential Equations with Applications , 1999, Texts in Applied Mathematics.

[18]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[19]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[20]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[21]  Herbert Steinrück,et al.  A bifurcation analysis of the one-dimensional steady-state semiconductor device equations , 1989 .

[22]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[23]  Weishi Liu,et al.  Geometric Singular Perturbation Approach to Steady-State Poisson--Nernst--Planck Systems , 2005, SIAM J. Appl. Math..

[24]  Robert S. Eisenberg,et al.  Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .

[25]  Mathieu S. Capcarrère,et al.  Necessary conditions for density classification by cellular automata. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Bixiang Wang,et al.  Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels , 2009, 0902.4290.

[27]  W. Im,et al.  Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.

[28]  M. S. Mock,et al.  AN EXAMPLE OF NONUNIQUENESS OF STATIONARY SOLUTIONS IN SEMICONDUCTOR DEVICE MODELS , 1982 .

[29]  Joseph W. Jerome,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study , 1997, SIAM J. Appl. Math..

[30]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[31]  R. Eisenberg,et al.  Charges, currents, and potentials in ionic channels of one conformation. , 1993, Biophysical journal.

[32]  Robert S. Eisenberg,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..

[33]  R. Eisenberg Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.

[34]  L. Henderson The Fitness of the Environment: An Inquiry Into the Biological Significance of the Properties of Matter , 1913 .

[35]  J Norbury,et al.  Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels , 2008, European Journal of Applied Mathematics.

[36]  Joseph W. Jerome,et al.  A finite element approximation theory for the drift diffusion semiconductor model , 1991 .

[37]  R. S. Eisenberg,et al.  Channels as enzymes , 1990, The Journal of Membrane Biology.

[38]  J. Chazalviel Coulomb Screening by Mobile Charges , 1999 .

[39]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds up to exponentially small errors , 1996 .

[40]  Dirk Gillespie,et al.  Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Boaz Nadler,et al.  Ionic Diffusion Through Protein Channels: From molecular description to continuum equations , 2003 .

[42]  E. W. McDaniel,et al.  Transport Properties of Ions in Gases , 1988 .

[43]  R. Eisenberg,et al.  Modified Donnan potentials for ion transport through biological ion channels. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Olivier Bernard,et al.  New perspectives in transport phenomena in electrolytes , 1996 .

[45]  B. Eisenberg,et al.  Ion Channels as Devices , 2003, Bio-, Micro-, and Nanosystems (IEEE Cat. No.03EX733).

[46]  J. Barthel,et al.  Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .

[47]  Dirk Gillespie,et al.  Density functional theory of charged, hard-sphere fluids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[49]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[51]  David J. Roulston,et al.  Bipolar Semiconductor Devices , 1990 .

[52]  Uwe Hollerbach,et al.  Dielectric boundary force and its crucial role in gramicidin. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Mark H. Holmes,et al.  Nonlinear ionic diffusion through charged polymeric gels , 1990 .

[54]  Robert S. Eisenberg,et al.  Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow Through Gramicidin A , 2002, J. Sci. Comput..

[55]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[56]  Nader Masmoudi,et al.  Diffusion Limit of a Semiconductor Boltzmann-Poisson System , 2007, SIAM J. Math. Anal..

[57]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[58]  Amit Singer,et al.  A Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel , 2009, SIAM J. Appl. Math..

[59]  Weishi Liu,et al.  Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System , 2008, SIAM J. Appl. Dyn. Syst..

[60]  Bob Eisenberg,et al.  Living Transistors: a Physicist's View of Ion Channels , 2008 .

[61]  Martin Burger,et al.  Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..