High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.

[1]  Y. Ogawa,et al.  Synchronous mode-locking in passively mode-locked semiconductor laser diodes using optical short pulses repeated at subharmonics of the cavity round-trip frequency , 1996, IEEE Photonics Technology Letters.

[2]  Lute Maleki,et al.  Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration. , 2005, Optics letters.

[3]  H. Haus,et al.  Additive-pulse limiting. , 1994 .

[4]  Peter J. Delfyett,et al.  Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources , 2009 .

[5]  D. Novak,et al.  Noise characterization of a regeneratively mode-locked fiber ring laser , 2000, IEEE Journal of Quantum Electronics.

[6]  Patrice Mégret,et al.  Stabilisation of actively modelocked Er-doped fibre laser by minimising interpulse noise power , 1998 .

[7]  Bocang Qiu,et al.  Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers. , 2011, Optics letters.

[8]  160 GHz harmonic mode-locked AlGaInAs 1.55 μm strained quantum-well compound-cavity laser. , 2010, Optics letters.

[9]  Matthew E. Grein,et al.  Timing jitter reduction in modelocked semiconductor lasers with photon seeding , 2002 .

[10]  L. Maleki,et al.  Optoelectronic oscillator for photonic systems , 1996 .

[11]  Philippe Emplit,et al.  Supermode noise of harmonically mode-locked erbium fiber lasers with composite cavity , 2002 .

[12]  K. Yvind,et al.  Investigations of Repetition Rate Stability of a Mode-Locked Quantum Dot Semiconductor Laser in an Auxiliary Optical Fiber Cavity , 2010, IEEE Journal of Quantum Electronics.

[13]  K. Tamura,et al.  Additive pulse limiting , 1993, Proceedings of LEOS '93.

[14]  O. Solgaard,et al.  Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers , 1993, IEEE Photonics Technology Letters.

[15]  M. Sorel,et al.  Effect of optical feedback on 60-GHz colliding-pulse semiconductor mode-locked lasers , 2005, IEEE Photonics Technology Letters.

[16]  S. Arahira Variable-in, Variable-out Optical Clock Recovery With an Optically Injection-Locked and Regeneratively Actively Mode-Locked Laser Diode , 2011, IEEE Journal of Quantum Electronics.

[17]  Gerrit Fiol,et al.  1.3 µm range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback , 2011 .

[18]  F. Grillot,et al.  rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback , 2010 .

[19]  L. Mollenauer,et al.  Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission. , 1993, Optics letters.

[20]  F. Grillot,et al.  Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser , 2009 .

[21]  Abderrahim Ramdane,et al.  Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback , 2009 .

[22]  Ian H. White,et al.  Long-wavelength monolithic mode-locked diode lasers , 2004 .

[23]  S. Romisch,et al.  Performance evaluation of an optoelectronic oscillator , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity , 2002 .

[25]  G. Carpintero,et al.  Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode , 2009, IEEE Photonics Technology Letters.

[26]  Daniil I. Nikitichev,et al.  Broad Repetition-Rate Tunable Quantum-Dot External-Cavity Passively Mode-Locked Laser with Extremely Narrow Radio Frequency Linewidth , 2011 .

[27]  J. McInerney,et al.  RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser , 2008, IEEE Photonics Technology Letters.

[28]  Yang Senlin,et al.  Study on the method of controlling chaos in an Er-doped fiber dual-ring laser via external optical injection and shifting optical feedback light. , 2007, Chaos.

[29]  D. Lenstra,et al.  Coherence collapse in single-mode semiconductor lasers due to optical feedback , 1985, IEEE Journal of Quantum Electronics.

[30]  Yang En-ze,et al.  An Optical Domain Combined Dual-Loop Optoelectronic Oscillator , 2007, IEEE Photonics Technology Letters.

[31]  K. Eikema,et al.  Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm. , 2009, Optics express.

[32]  Premjeet Kumar,et al.  Frequency-doubling optoelectronic oscillator for generating high-frequency microwave signals with low phase noise , 2007 .