Accelerating Monte Carlo Markov chains with proxy and error models
暂无分享,去创建一个
Ahmed H. Elsheikh | Ivan Lunati | Vasily V. Demyanov | Laureline Josset | I. Lunati | A. Elsheikh | L. Josset | V. Demyanov
[1] H. Kaiser. The varimax criterion for analytic rotation in factor analysis , 1958 .
[2] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[3] Jonathan Carter,et al. An analysis of history matching errors , 2005 .
[4] Brent Henderson,et al. Exploring between site differences in water quality trends: a functional data analysis approach , 2006 .
[5] M. Richman,et al. Rotation of principal components , 1986 .
[6] Sanford Weisberg,et al. An R Companion to Applied Regression , 2010 .
[7] Ivan Lunati,et al. Local and Global Error Models to Improve Uncertainty Quantification , 2013, Mathematical Geosciences.
[8] Yalchin Efendiev,et al. Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..
[9] David Ginsbourger,et al. Functional error modeling for uncertainty quantification in hydrogeology , 2015 .
[10] D. Mallants,et al. Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion , 2013 .
[11] Michael Andrew Christie,et al. Solution Error Models: A New Approach for Coarse Grid History Matching , 2005 .
[12] Tiangang Cui,et al. Adaptive Error Modelling in MCMC Sampling for Large Scale Inverse Problems , 2011 .
[13] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[14] Spencer Graves,et al. Functional Data Analysis with R and MATLAB , 2009 .
[15] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[16] Mike Christie,et al. Uncertainty quantification for porous media flows , 2006, J. Comput. Phys..
[17] Yalchin Efendiev,et al. Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques , 2009 .
[18] T. Hou,et al. Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification , 2008 .
[19] C. Fox,et al. Markov chain Monte Carlo Using an Approximation , 2005 .
[20] R. Carnell. Latin Hypercube Samples , 2016 .
[21] Michael Andrew Christie,et al. Detection of Optimal Models in Parameter Space with Support Vector Machines , 2010 .
[22] Peter R. King,et al. Our calibrated model has poor predictive value: An example from the petroleum industry , 2006, Reliab. Eng. Syst. Saf..
[23] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[24] S. Weisberg. Applied Linear Regression , 1981 .
[25] H. Tchelepi,et al. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .
[26] Jonathan Carter,et al. Errors in History Matching , 2004 .
[27] Michael Andrew Christie,et al. History Matching and Uncertainty Quantification: Multiobjective Particle Swarm Optimisation Approach , 2011 .
[28] B. Silverman,et al. Functional Data Analysis , 1997 .
[29] Michael Andrew Christie,et al. Population MCMC methods for history matching and uncertainty quantification , 2010, Computational Geosciences.
[30] T. LaForce,et al. Bayesian Reservoir History Matching Considering Model and Parameter Uncertainties , 2012, Mathematical Geosciences.
[31] Yalchin Efendiev,et al. An efficient two‐stage Markov chain Monte Carlo method for dynamic data integration , 2005 .
[32] Mary F. Wheeler,et al. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates , 2014 .
[33] Louis J. Durlofsky,et al. Rapid Construction of Ensembles of High-resolution Reservoir Models Constrained to Production Data , 2010 .
[34] A. O’Sullivan,et al. Error models for reducing history match bias , 2006 .
[35] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[36] Dongxiao Zhang,et al. A sparse grid based Bayesian method for contaminant source identification , 2012 .