Expanding and engineering the genetic code in a single expression experiment.

Expanding and engineering the code simultaneously: This concept was experimentally realized in a single in vivo expression experiment whereby residue-specific, sense codon reassignments Met→Nle/Pro→(4S-F)Pro (code engineering) were combined with position-specific STOP→Bpa read-through by an amber suppressor tRNA (code expansion).

[1]  Carlos G. Acevedo-Rocha,et al.  Lipase Congeners Designed by Genetic Code Engineering , 2011 .

[2]  N. Budisa,et al.  In vivo double and triple labeling of proteins using synthetic amino acids. , 2010, Angewandte Chemie.

[3]  L. Moroder,et al.  Synthetic biology of protein folding. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  H. Suga,et al.  Ribosome evolution for two artificial amino acids in E. coli. , 2010, Chemistry & biology.

[5]  David H Russell,et al.  A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. , 2010, Angewandte Chemie.

[6]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[7]  A. Deiters,et al.  Site-specific incorporation of fluorotyrosines into proteins in Escherichia coli by photochemical disguise. , 2010, Biochemistry.

[8]  H. Lusic,et al.  Generating permissive site-specific unnatural aminoacyl-tRNA synthetases. , 2010, Biochemistry.

[9]  Peter G Schultz,et al.  An enhanced system for unnatural amino acid mutagenesis in E. coli. , 2010, Journal of molecular biology.

[10]  T. Carell,et al.  Synthesis of Threefold Glycosylated Proteins using Click Chemistry and Genetically Encoded Unnatural Amino Acids , 2009, Chembiochem : a European journal of chemical biology.

[11]  P. Schultz,et al.  Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. , 2009, Angewandte Chemie.

[12]  P. Schultz,et al.  Protein-DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid. , 2009, Bioorganic & medicinal chemistry letters.

[13]  U. Bornscheuer,et al.  Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis , 2009, Extremophiles.

[14]  R. Huber,et al.  Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein , 2009, Proceedings of the National Academy of Sciences.

[15]  P. Schultz,et al.  A promiscuous aminoacyl-tRNA synthetase that incorporates cysteine, methionine, and alanine homologs into proteins. , 2008, Bioorganic & medicinal chemistry letters.

[16]  Nediljko Budisa,et al.  Azatryptophans endow proteins with intrinsic blue fluorescence , 2008, Proceedings of the National Academy of Sciences.

[17]  L. Moroder,et al.  Convenient syntheses of homopropargylglycine , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[18]  Susan E. Cellitti,et al.  In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. , 2008, Journal of the American Chemical Society.

[19]  J. Bae,et al.  Synthetic Biology of Proteins: Tuning GFPs Folding and Stability with Fluoroproline , 2008, PloS one.

[20]  T. Ohtsuki,et al.  Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system. , 2007, Journal of the American Chemical Society.

[21]  J. Chin,et al.  Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion , 2007, Nature Biotechnology.

[22]  N. Budisa,et al.  Natural history and experimental evolution of the genetic code , 2007, Applied Microbiology and Biotechnology.

[23]  D. Söll,et al.  Pyrrolysine analogues as substrates for pyrrolysyl‐tRNA synthetase , 2006, FEBS letters.

[24]  Peter G. Schultz,et al.  A chemical toolkit for proteins — an expanded genetic code , 2006, Nature Reviews Molecular Cell Biology.

[25]  Peter G Schultz,et al.  Efficient incorporation of unnatural amino acids into proteins in Escherichia coli , 2006, Nature Methods.

[26]  N. Budisa Prolegomena zum experimentellen Engineering des genetischen Codes durch Erweiterung seines Aminosäurerepertoires , 2004 .

[27]  Nediljko Budisa,et al.  Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. , 2004, Angewandte Chemie.

[28]  Peter G Schultz,et al.  An expanded genetic code with a functional quadruplet codon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Andrew B. Martin,et al.  Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Furter Expansion of the genetic code: Site‐directed p‐fluoro‐phenylalanine incorporation in Escherichia coli , 1998, Protein science : a publication of the Protein Society.

[31]  C. Eckerskorn,et al.  High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. , 1995, European journal of biochemistry.

[32]  A. Fersht Review Lecture Enzymic editing mechanisms and the genetic code , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  U. Winkler,et al.  Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens , 1979, Journal of bacteriology.

[34]  A. Fersht,et al.  Folding of barstar C40A/C82A/P27A and catalysis of the peptidyl‐prolyl cis/trans isomerization by human cytosolic cyclophilin (Cyp18) , 1999, Protein science : a publication of the Protein Society.