Computational Elucidation of Structural Basis for Ligand Binding with Leishmania donovani Adenosine Kinase

Enzyme adenosine kinase is responsible for phosphorylation of adenosine to AMP and is crucial for parasites which are purine auxotrophs. The present study describes development of robust homology model of Leishmania donovani adenosine kinase to forecast interaction phenomenon with inhibitory molecules using structure-based drug designing strategy. Docking calculation using reported organic small molecules and natural products revealed key active site residues such as Arg131 and Asp16 for ligand binding, which is consistent with previous studies. Molecular dynamics simulation of ligand protein complex revealed the importance of hydrogen bonding with active site residues and solvent molecules, which may be crucial for successful development of drug candidates. Precise role of Phe168 residue in the active site was elucidated in this report that provided stability to ligand-protein complex via aromatic-π contacts. Overall, the present study is believed to provide valuable information to design a new compound with improved activity for antileishmanial therapeutics development.

[1]  S. Bhattacharya,et al.  Pre- & post-treatment evaluation of immunological features in Indian visceral leishmaniasis (VL) patients with HIV co-infection. , 2006, The Indian journal of medical research.

[2]  Richard A. Friesner,et al.  Flexible ligand docking with Glide. , 2007, Current protocols in bioinformatics.

[3]  David S. Wishart,et al.  SuperPose: a simple server for sophisticated structural superposition , 2004, Nucleic Acids Res..

[4]  Torsten Schwede,et al.  BIOINFORMATICS Bioinformatics Advance Access published November 12, 2005 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling , 2022 .

[5]  P. Mäser,et al.  Adenosine Kinase Mediates High Affinity Adenosine Salvage in Trypanosoma brucei* , 2008, Journal of Biological Chemistry.

[6]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[7]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[8]  M. Ghosh,et al.  Probing the function(s) of active-site arginine residue in Leishmania donovani adenosine kinase. , 1994, Biochemical Journal.

[9]  R. Gupta,et al.  Adenosine kinase and ribokinase – the RK family of proteins , 2008, Cellular and Molecular Life Sciences.

[10]  Maria A Miteva,et al.  Fast structure-based virtual ligand screening combining FRED, DOCK, and Surflex. , 2005, Journal of medicinal chemistry.

[11]  Sarman Singh,et al.  Challenges and new discoveries in the treatment of leishmaniasis , 2004, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[12]  R. L. Berens,et al.  Purine metabolism in Leishmania donovani amastigotes and promastigotes. , 1983, Molecular and biochemical parasitology.

[13]  Richard M. Jackson,et al.  Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites , 2005, Bioinform..

[14]  D. Bhaumik,et al.  Isolation and characterization of adenosine kinase from Leishmania donovani. , 1987, The Journal of biological chemistry.

[15]  K. Sinha,et al.  Molecular cloning and expression of adenosine kinase from Leishmania donovani: identification of unconventional P-loop motif. , 1999, The Biochemical journal.

[16]  W. Setzer,et al.  In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants , 2012, PLoS neglected tropical diseases.

[17]  Teodorico C. Ramalho,et al.  Molecular modeling of the Toxoplasma gondii adenosine kinase inhibitors , 2012, Medicinal Chemistry Research.

[18]  T. Krenitsky,et al.  Purine phosphoribosyltransferases from Leishmania donovani. , 1980, The Journal of biological chemistry.

[19]  A. Gomtsyan,et al.  4-amino-5-aryl-6-arylethynylpyrimidines: structure-activity relationships of non-nucleoside adenosine kinase inhibitors. , 2007, Bioorganic & medicinal chemistry.

[20]  D. Eisenberg,et al.  Assessment of protein models with three-dimensional profiles , 1992, Nature.

[21]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[22]  M. Erion,et al.  Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. , 2000, Journal of medicinal chemistry.

[23]  Morten Nielsen,et al.  CPHmodels-3.0—remote homology modeling using structure-guided sequence profiles , 2010, Nucleic Acids Res..

[24]  T. Yeates,et al.  Verification of protein structures: Patterns of nonbonded atomic interactions , 1993, Protein science : a publication of the Protein Society.

[25]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[26]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[27]  A. Chakraborty,et al.  Homology-model-guided site-specific mutagenesis reveals the mechanisms of substrate binding and product-regulation of adenosine kinase from Leishmania donovani. , 2006, The Biochemical journal.

[28]  Jinbo Xu,et al.  Raptorx: Exploiting structure information for protein alignment by statistical inference , 2011, Proteins.

[29]  Bikash R. Sahoo,et al.  Exploring novel KDR inhibitors based on pharmaco-informatics methodology , 2013, SAR and QSAR in environmental research.

[30]  Julio Caballero,et al.  A CoMSIA study on the adenosine kinase inhibition of pyrrolo[2,3-d]pyrimidine nucleoside analogues. , 2008, Bioorganic & medicinal chemistry.

[31]  A. Laio,et al.  Predicting crystal structures: the Parrinello-Rahman method revisited. , 2002, Physical review letters.

[32]  M. Berg,et al.  Inhibitors of the Purine Salvage Pathway: A Valuable Approach for Antiprotozoal Chemotherapy? , 2010, Current medicinal chemistry.

[33]  Lisa Yan,et al.  LOOPER: a molecular mechanics-based algorithm for protein loop prediction. , 2008, Protein engineering, design & selection : PEDS.

[34]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[35]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[36]  Thomas Lengauer,et al.  Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking , 1999, Proteins.

[37]  A. Gomtsyan,et al.  5-(3-Bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-ylamine: structure-activity relationships of 7-substituted heteroaryl analogs as non-nucleoside adenosine kinase inhibitors. , 2005, Bioorganic & medicinal chemistry.

[38]  L. Scapozza,et al.  Crystal Structures of T. b. rhodesiense Adenosine Kinase Complexed with Inhibitor and Activator: Implications for Catalysis and Hyperactivation , 2011, PLoS neglected tropical diseases.

[39]  Michael P Barrett,et al.  Chemotherapy of trypanosomiases and leishmaniasis. , 2005, Trends in parasitology.

[40]  R. Peeling,et al.  Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? , 2007, Nature Reviews Microbiology.

[41]  Y. Takahata,et al.  CONFORMATION OF NEOLIGNANS THAT BIND TO THE ARGININE RESIDUE IN ADENOSINE-KINASE FROM LEISHMANIA DONOVANI , 1999 .

[42]  R. Datta,et al.  Antiparasitic chemotherapy: tinkering with the purine salvage pathway. , 2008, Advances in Experimental Medicine and Biology.

[43]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[44]  A. Chakraborty,et al.  Mutational analysis of the active-site residues crucial for catalytic activity of adenosine kinase from Leishmania donovani. , 2005, The Biochemical journal.

[45]  Matthew P. Repasky,et al.  Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. , 2006, Journal of medicinal chemistry.

[46]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[47]  A. Blenkinsop,et al.  World Health , 1957, Nature.

[48]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .