Contraction and Optimality Properties of an Adaptive Legendre–Galerkin Method: The Multi-Dimensional Case

We analyze the theoretical properties of an adaptive Legendre–Galerkin method in the multidimensional case. After the recent investigations for Fourier–Galerkin methods in a periodic box and for Legendre–Galerkin methods in the one dimensional setting, the present study represents a further step towards a mathematically rigorous understanding of adaptive spectral/$$hp$$hp discretizations of elliptic boundary-value problems. The main contribution of the paper is a careful construction of a multidimensional Riesz basis in $$H^1$$H1, based on a quasi-orthonormalization procedure. This allows us to design an adaptive algorithm, to prove its convergence by a contraction argument, and to discuss its optimality properties (in the sense of non-linear approximation theory) in certain sparsity classes of Gevrey type.

[1]  W. Dörfler,et al.  Convergence of an adaptive hp finite element strategy in higher space-dimensions , 2010 .

[2]  P. Davis Interpolation and approximation , 1965 .

[3]  Marjorie A. McClain,et al.  A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .

[4]  C. Canuto,et al.  On the decay of the inverse of matrices that are sum of Kronecker products , 2013, 1312.6631.

[5]  John Couch Adams,et al.  III. On the expression of the product of any two legendre’s coefficients by means of a series of Legendre’s coefficients , 1878, Proceedings of the Royal Society of London.

[6]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[7]  M. Newman,et al.  Interpolation and approximation , 1965 .

[8]  Massimo Fornasier,et al.  Optimal adaptive computations in the Jaffard algebra and localized frames , 2010, J. Approx. Theory.

[9]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[10]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[11]  Ricardo H. Nochetto,et al.  Adaptive Fourier-Galerkin methods , 2012, Math. Comput..

[12]  Anna Scotti,et al.  Analysis of a model for precipitation and dissolution coupled with a Darcy flux , 2015 .

[13]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[14]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[15]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[16]  Ricardo H. Nochetto,et al.  Contraction and optimality properties of adaptive Legendre-Galerkin methods: The one-dimensional case , 2012, Comput. Math. Appl..

[17]  I. Babuška,et al.  Theh, p andh-p versions of the finite element method in 1 dimension , 1986 .

[18]  Michele Benzi,et al.  Orderings for Factorized Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[19]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[20]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[21]  Rob Stevenson,et al.  Adaptive wavelet methods for solving operator equations: An overview , 2009 .

[22]  Kunibert G. Siebert,et al.  A posteriori estimators for the h-p version of the finite element method in 1D , 2000 .

[23]  Thomas Strohmer,et al.  Localization of Matrix Factorizations , 2013, Found. Comput. Math..

[24]  Leszek Demkowicz,et al.  Fully automatic hp-adaptivity in three dimensions , 2006 .

[25]  Ricardo H. Nochetto,et al.  Convergence Rates of AFEM with H−1 Data , 2012, Found. Comput. Math..

[26]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[27]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[28]  C. Canuto,et al.  On the Numerical Analysis of Adaptive Spectral/hp Methods for Elliptic Problems , 2013 .

[29]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[30]  Willy Dörfler,et al.  Convergence of an adaptive hp finite element strategy in one space dimension , 2007 .

[31]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[32]  J. Maître,et al.  Condition number and diagonal preconditioning: comparison of the $p$-version and the spectral element methods , 1996 .

[33]  M. S. Baouendi,et al.  Régularité analytique et itérés d'opérateurs elliptiques dégénérés; applications , 1972 .

[34]  P. Hall,et al.  Innovated Higher Criticism for Detecting Sparse Signals in Correlated Noise , 2009, 0902.3837.