Contraction and Optimality Properties of an Adaptive Legendre–Galerkin Method: The Multi-Dimensional Case
暂无分享,去创建一个
[1] W. Dörfler,et al. Convergence of an adaptive hp finite element strategy in higher space-dimensions , 2010 .
[2] P. Davis. Interpolation and approximation , 1965 .
[3] Marjorie A. McClain,et al. A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .
[4] C. Canuto,et al. On the decay of the inverse of matrices that are sum of Kronecker products , 2013, 1312.6631.
[5] John Couch Adams,et al. III. On the expression of the product of any two legendre’s coefficients by means of a series of Legendre’s coefficients , 1878, Proceedings of the Royal Society of London.
[6] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[7] M. Newman,et al. Interpolation and approximation , 1965 .
[8] Massimo Fornasier,et al. Optimal adaptive computations in the Jaffard algebra and localized frames , 2010, J. Approx. Theory.
[9] I. Babuska,et al. The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .
[10] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[11] Ricardo H. Nochetto,et al. Adaptive Fourier-Galerkin methods , 2012, Math. Comput..
[12] Anna Scotti,et al. Analysis of a model for precipitation and dissolution coupled with a Darcy flux , 2015 .
[13] Stéphane Jaffard. Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .
[14] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[15] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[16] Ricardo H. Nochetto,et al. Contraction and optimality properties of adaptive Legendre-Galerkin methods: The one-dimensional case , 2012, Comput. Math. Appl..
[17] I. Babuška,et al. Theh, p andh-p versions of the finite element method in 1 dimension , 1986 .
[18] Michele Benzi,et al. Orderings for Factorized Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..
[19] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[20] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[21] Rob Stevenson,et al. Adaptive wavelet methods for solving operator equations: An overview , 2009 .
[22] Kunibert G. Siebert,et al. A posteriori estimators for the h-p version of the finite element method in 1D , 2000 .
[23] Thomas Strohmer,et al. Localization of Matrix Factorizations , 2013, Found. Comput. Math..
[24] Leszek Demkowicz,et al. Fully automatic hp-adaptivity in three dimensions , 2006 .
[25] Ricardo H. Nochetto,et al. Convergence Rates of AFEM with H−1 Data , 2012, Found. Comput. Math..
[26] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[27] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[28] C. Canuto,et al. On the Numerical Analysis of Adaptive Spectral/hp Methods for Elliptic Problems , 2013 .
[29] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[30] Willy Dörfler,et al. Convergence of an adaptive hp finite element strategy in one space dimension , 2007 .
[31] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[32] J. Maître,et al. Condition number and diagonal preconditioning: comparison of the $p$-version and the spectral element methods , 1996 .
[33] M. S. Baouendi,et al. Régularité analytique et itérés d'opérateurs elliptiques dégénérés; applications , 1972 .
[34] P. Hall,et al. Innovated Higher Criticism for Detecting Sparse Signals in Correlated Noise , 2009, 0902.3837.