Optimal Parameterized Algorithms for Planar Facility Location Problems Using Voronoi Diagrams
暂无分享,去创建一个
[1] Dániel Marx,et al. Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.
[2] Erik D. Demaine,et al. Bidimensional Parameters and Local Treewidth , 2004, SIAM J. Discret. Math..
[3] Pankaj K. Agarwal,et al. Exact and Approximation Algortihms for Clustering , 1997 .
[4] Erik Jan van Leeuwen,et al. k-Gap Interval Graphs , 2011, LATIN.
[5] Sariel Har-Peled,et al. Being Fat and Friendly is Not Enough , 2009, ArXiv.
[6] Dimitrios M. Thilikos,et al. Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.
[7] Minghui Jiang,et al. Recognizing d-Interval Graphs and d-Track Interval Graphs , 2010, Algorithmica.
[8] Dániel Marx,et al. Efficient Approximation Schemes for Geometric Problems? , 2005, ESA.
[9] Yong Zhang,et al. Parameterized complexity in multiple-interval graphs: Domination, partition, separation, irredundancy , 2012, Theor. Comput. Sci..
[10] Dániel Marx,et al. Kernelization of packing problems , 2012, SODA.
[11] Fedor V. Fomin,et al. Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs , 2010, Inf. Comput..
[12] Nabil H. Mustafa,et al. QPTAS for Geometric Set-Cover Problems via Optimal Separators , 2014, ArXiv.
[13] Dimitrios M. Thilikos. Fast Sub-exponential Algorithms and Compactness in Planar Graphs , 2011, ESA.
[14] Erik D. Demaine,et al. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.
[15] Hisao Tamaki,et al. Optimal Branch-Decomposition of Planar Graphs in O(n3) Time , 2005, ICALP.
[16] Erik D. Demaine,et al. Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth , 2004, GD.
[17] Dimitrios M. Thilikos,et al. A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.
[18] Ge Xia,et al. Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..
[19] Sariel Har-Peled,et al. Quasi-Polynomial Time Approximation Scheme for Sparse Subsets of Polygons , 2013, SoCG.
[20] Erik Jan van Leeuwen,et al. Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs , 2013, STACS.
[21] Erik Jan van Leeuwen,et al. Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[22] Fedor V. Fomin,et al. Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions , 2005, ESA.
[23] Fedor V. Fomin,et al. Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.
[24] Mohammad Taghi Hajiaghayi,et al. Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions) , 2014, SODA.
[25] P. Klein,et al. Solving PLANAR k-TERMINAL CUT in O(nc , 2012 .
[26] Erik D. Demaine,et al. The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..
[27] Pascal Ochem,et al. The Maximum Clique Problem in Multiple Interval Graphs , 2011, Algorithmica.
[28] Mihai Patrascu,et al. On the possibility of faster SAT algorithms , 2010, SODA '10.
[29] Dániel Marx,et al. Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[30] Dániel Marx,et al. Parameterized Complexity of Independence and Domination on Geometric Graphs , 2006, IWPEC.
[31] Dániel Marx,et al. On the Optimality of Planar and Geometric Approximation Schemes , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[32] Michael R. Fellows,et al. On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..
[33] Nicholas C. Wormald,et al. Geometric separator theorems and applications , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[34] Erik D. Demaine,et al. Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..
[35] Jirí Fiala,et al. Geometric separation and exact solutions for the parameterized independent set problem on disk graphs , 2002, J. Algorithms.
[36] Philip N. Klein,et al. Solving Planar k -Terminal Cut in $O(n^{c \sqrt{k}})$ Time , 2012, ICALP.
[37] Andreas Wiese,et al. Approximation Schemes for Maximum Weight Independent Set of Rectangles , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[38] Richard C. T. Lee,et al. The slab dividing approach to solve the EuclideanP-Center problem , 2005, Algorithmica.
[39] Micha Sharir,et al. Computing Maximally Separated Sets in the Plane , 2006, SIAM J. Comput..
[40] Robin Thomas,et al. Call routing and the ratcatcher , 1994, Comb..
[41] Dimitrios M. Thilikos,et al. Subexponential parameterized algorithms , 2008, Comput. Sci. Rev..
[42] Hisao Tamaki,et al. Optimal branch-decomposition of planar graphs in O(n3) Time , 2005, TALG.
[43] Russell Impagliazzo,et al. Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[44] Erik D. Demaine,et al. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.
[45] Timothy M. Chan,et al. Exact algorithms and APX-hardness results for geometric packing and covering problems , 2014, Comput. Geom..
[46] Andreas Wiese,et al. A QPTAS for Maximum Weight Independent Set of Polygons with Polylogarithmically Many Vertices , 2013, SODA.
[47] Philip N. Klein,et al. A subexponential parameterized algorithm for Subset TSP on planar graphs , 2014, SODA.
[48] Fedor V. Fomin,et al. Subexponential algorithms for partial cover problems , 2011, Inf. Process. Lett..
[49] Dániel Marx,et al. The limited blessing of low dimensionality: when 1-1/d is the best possible exponent for d-dimensional geometric problems , 2014, Symposium on Computational Geometry.