Optimal Parameterized Algorithms for Planar Facility Location Problems Using Voronoi Diagrams

We study a general family of facility location problems defined on planar graphs and on the 2-dimensional plane. In these problems, a subset of k objects has to be selected, satisfying certain packing (disjointness) and covering constraints. Our main result is showing that, for each of these problems, the \(n^{{\mathcal{O}}(k)}\) time brute force algorithm of selecting k objects can be improved to \(n^{{\mathcal{O}}(\sqrt{k})}\) time. The algorithm is based on focusing on the Voronoi diagram of a hypothetical solution of k objects; this idea was introduced recently in the design of geometric QPTASs, but was not yet used for exact algorithms and for planar graphs. As concrete consequences of our main result, we obtain \(n^{{\mathcal{O}}(\sqrt{k})}\) time algorithms for the following problems: d-Scattered Set in planar graphs (find k vertices at pairwise distance d); d-Dominating Set/(k,d)-Center in planar graphs (find k vertices such that every vertex is at distance at most d from these vertices); select k pairwise disjoint connected vertex sets from a given collection; select k pairwise disjoint disks in the plane (of possibly different radii) from a given collection; cover a set of points in the plane by selecting k disks/axis-parallel squares from a given collection. We complement these positive results with lower bounds suggesting that some similar, but slightly more general problems (such as covering points with axis-parallel rectangles) do not admit \(n^{{\mathcal{O}}(\sqrt{k})}\) time algorithms.

[1]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[2]  Erik D. Demaine,et al.  Bidimensional Parameters and Local Treewidth , 2004, SIAM J. Discret. Math..

[3]  Pankaj K. Agarwal,et al.  Exact and Approximation Algortihms for Clustering , 1997 .

[4]  Erik Jan van Leeuwen,et al.  k-Gap Interval Graphs , 2011, LATIN.

[5]  Sariel Har-Peled,et al.  Being Fat and Friendly is Not Enough , 2009, ArXiv.

[6]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[7]  Minghui Jiang,et al.  Recognizing d-Interval Graphs and d-Track Interval Graphs , 2010, Algorithmica.

[8]  Dániel Marx,et al.  Efficient Approximation Schemes for Geometric Problems? , 2005, ESA.

[9]  Yong Zhang,et al.  Parameterized complexity in multiple-interval graphs: Domination, partition, separation, irredundancy , 2012, Theor. Comput. Sci..

[10]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[11]  Fedor V. Fomin,et al.  Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs , 2010, Inf. Comput..

[12]  Nabil H. Mustafa,et al.  QPTAS for Geometric Set-Cover Problems via Optimal Separators , 2014, ArXiv.

[13]  Dimitrios M. Thilikos Fast Sub-exponential Algorithms and Compactness in Planar Graphs , 2011, ESA.

[14]  Erik D. Demaine,et al.  Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.

[15]  Hisao Tamaki,et al.  Optimal Branch-Decomposition of Planar Graphs in O(n3) Time , 2005, ICALP.

[16]  Erik D. Demaine,et al.  Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth , 2004, GD.

[17]  Dimitrios M. Thilikos,et al.  A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.

[18]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[19]  Sariel Har-Peled,et al.  Quasi-Polynomial Time Approximation Scheme for Sparse Subsets of Polygons , 2013, SoCG.

[20]  Erik Jan van Leeuwen,et al.  Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs , 2013, STACS.

[21]  Erik Jan van Leeuwen,et al.  Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[22]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions , 2005, ESA.

[23]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.

[24]  Mohammad Taghi Hajiaghayi,et al.  Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions) , 2014, SODA.

[25]  P. Klein,et al.  Solving PLANAR k-TERMINAL CUT in O(nc , 2012 .

[26]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[27]  Pascal Ochem,et al.  The Maximum Clique Problem in Multiple Interval Graphs , 2011, Algorithmica.

[28]  Mihai Patrascu,et al.  On the possibility of faster SAT algorithms , 2010, SODA '10.

[29]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[30]  Dániel Marx,et al.  Parameterized Complexity of Independence and Domination on Geometric Graphs , 2006, IWPEC.

[31]  Dániel Marx,et al.  On the Optimality of Planar and Geometric Approximation Schemes , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[32]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[33]  Nicholas C. Wormald,et al.  Geometric separator theorems and applications , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[34]  Erik D. Demaine,et al.  Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..

[35]  Jirí Fiala,et al.  Geometric separation and exact solutions for the parameterized independent set problem on disk graphs , 2002, J. Algorithms.

[36]  Philip N. Klein,et al.  Solving Planar k -Terminal Cut in $O(n^{c \sqrt{k}})$ Time , 2012, ICALP.

[37]  Andreas Wiese,et al.  Approximation Schemes for Maximum Weight Independent Set of Rectangles , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[38]  Richard C. T. Lee,et al.  The slab dividing approach to solve the EuclideanP-Center problem , 2005, Algorithmica.

[39]  Micha Sharir,et al.  Computing Maximally Separated Sets in the Plane , 2006, SIAM J. Comput..

[40]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[41]  Dimitrios M. Thilikos,et al.  Subexponential parameterized algorithms , 2008, Comput. Sci. Rev..

[42]  Hisao Tamaki,et al.  Optimal branch-decomposition of planar graphs in O(n3) Time , 2005, TALG.

[43]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[44]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[45]  Timothy M. Chan,et al.  Exact algorithms and APX-hardness results for geometric packing and covering problems , 2014, Comput. Geom..

[46]  Andreas Wiese,et al.  A QPTAS for Maximum Weight Independent Set of Polygons with Polylogarithmically Many Vertices , 2013, SODA.

[47]  Philip N. Klein,et al.  A subexponential parameterized algorithm for Subset TSP on planar graphs , 2014, SODA.

[48]  Fedor V. Fomin,et al.  Subexponential algorithms for partial cover problems , 2011, Inf. Process. Lett..

[49]  Dániel Marx,et al.  The limited blessing of low dimensionality: when 1-1/d is the best possible exponent for d-dimensional geometric problems , 2014, Symposium on Computational Geometry.