Ferroelectric Thin Films for Oxide Electronics

[1]  A. Rappe,et al.  Strain-induced antipolar phase in hafnia stabilizes robust thin-film ferroelectricity , 2022, Science advances.

[2]  Yi Zhang,et al.  Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal , 2022, Nature Materials.

[3]  M. Trassin,et al.  Ferroelectric Domain Engineering Using Structural Defect Ordering , 2022, Chemistry of Materials.

[4]  M. Fiebig,et al.  Current-driven dynamics and ratchet effect of skyrmion bubbles in a ferrimagnetic insulator , 2022, Nature Nanotechnology.

[5]  Ashok Kumar V,et al.  Resistive Switching in Emerging Materials and their Characteristics for Neuromorphic Computing , 2022, Materials Today Electronics.

[6]  M. Fiebig,et al.  Multilevel polarization switching in ferroelectric thin films , 2022, Nature Communications.

[7]  V. Garcia,et al.  Bringing some bulk into ferroelectric devices , 2022, Nature Materials.

[8]  C. Grigoropoulos,et al.  Emergent ferroelectricity in subnanometer binary oxide films on silicon , 2022, Science.

[9]  Christopher J. Tassone,et al.  Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors , 2022, Nature.

[10]  C. Hwang,et al.  The fundamentals and applications of ferroelectric HfO2 , 2022, Nature Reviews Materials.

[11]  V. Garcia,et al.  Polar Chirality in BiFeO3 Emerging from A Peculiar Domain Wall Sequence , 2022, Advanced Electronic Materials.

[12]  M. Fiebig,et al.  Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon , 2022, Nature communications.

[13]  P. Vullum,et al.  Atomic-scale 3D imaging of individual dopant atoms in an oxide semiconductor , 2021, Nature Communications.

[14]  Kenji Watanabe,et al.  Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides , 2021, Nature Nanotechnology.

[15]  Ju Li,et al.  Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities , 2021, Proceedings of the National Academy of Sciences.

[16]  M. Rossell,et al.  Nanoscale Design of High-Quality Epitaxial Aurivillius Thin Films , 2021, Chemistry of Materials.

[17]  D. Meier,et al.  Ferroelectric domain walls for nanotechnology , 2021, Nature Reviews Materials.

[18]  M. Fiebig,et al.  Training the Polarization in Integrated La0.15Bi0.85FeO3‐Based Devices , 2021, Advanced materials.

[19]  S. Cheong,et al.  Asymmetric Character of the Ferroelectric Phase Transition and Charged Domain Walls in a Hybrid Improper Ferroelectric , 2021, Advanced Electronic Materials.

[20]  M. Rossell,et al.  Monitoring Electrical Biasing of Pb(Zr0.2Ti0.8)O3 Ferroelectric Thin Films In Situ by DPC-STEM Imaging , 2021, Materials.

[21]  E. Tsymbal Two-dimensional ferroelectricity by design , 2021, Science.

[22]  A. Björling,et al.  Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices , 2021, Science.

[23]  M. Fiebig,et al.  Inversion-Symmetry Engineering in Layered Oxide Thin Films. , 2021, Nano letters.

[24]  L. Vila,et al.  Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride , 2021, Nature Electronics.

[25]  Michael J. Hoffmann,et al.  Next generation ferroelectric materials for semiconductor process integration and their applications , 2021, Journal of Applied Physics.

[26]  S. Gupta,et al.  Negative capacitance effects in ferroelectric heterostructures: A theoretical perspective , 2021 .

[27]  Yuanyuan Zhou,et al.  3D structure–property correlations of electronic and energy materials by tomographic atomic force microscopy , 2021 .

[28]  M. Rossell,et al.  Layer and spontaneous polarizations in perovskite oxides and their interplay in multiferroic bismuth ferrite. , 2021, The Journal of chemical physics.

[29]  Ho Won Jang,et al.  Ferroelectric field effect transistors: Progress and perspective , 2021, APL Materials.

[30]  C. Gattinoni,et al.  On the happiness of ferroelectric surfaces and its role in water dissociation: The example of bismuth ferrite. , 2020, The Journal of chemical physics.

[31]  T. Taniguchi,et al.  Interfacial ferroelectricity by van der Waals sliding , 2020, Science.

[32]  D. Kwon,et al.  One Nanometer HfO2‐Based Ferroelectric Tunnel Junctions on Silicon , 2020, Advanced Electronic Materials.

[33]  J. Cairney,et al.  Atom probe tomography , 2013, Nature Reviews Methods Primers.

[34]  R. Ramesh,et al.  A new era in ferroelectrics , 2020, APL Materials.

[35]  Michael Schmidt,et al.  Persistence of Ferroelectricity Close to Unit-Cell Thickness in Structurally Disordered Aurivillius Phases , 2020 .

[36]  J. Kong,et al.  Unconventional ferroelectricity in moiré heterostructures , 2020, Nature.

[37]  M. Fiebig,et al.  In-situ monitoring of interface proximity effects in ultrathin ferroelectrics , 2020, Nature Communications.

[38]  M. Fiebig,et al.  Interface and surface stabilization of the polarization in ferroelectric thin films , 2020, Proceedings of the National Academy of Sciences.

[39]  H. Zhao,et al.  Dzyaloshinskii–Moriya-like interaction in ferroelectrics and antiferroelectrics , 2020, Nature Materials.

[40]  M. Fiebig,et al.  Tracking ferroelectric domain formation during epitaxial growth of PbTiO3 films , 2020, Applied Physics Letters.

[41]  Long-qing Chen,et al.  Controlled Nucleation and Stabilization of Ferroelectric Domain Wall Patterns in Epitaxial (110) Bismuth Ferrite Heterostructures , 2020, Advanced Functional Materials.

[42]  P. Davids,et al.  Compositional dependence of linear and nonlinear optical response in crystalline hafnium zirconium oxide thin films , 2020 .

[43]  M. Fiebig,et al.  Robust In‐Plane Ferroelectricity in Ultrathin Epitaxial Aurivillius Films , 2020, Advanced Materials Interfaces.

[44]  S. Haile,et al.  Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography , 2020, Nature Materials.

[45]  C. Hu,et al.  Enhanced ferroelectricity in ultrathin films grown directly on silicon , 2020, Nature.

[46]  J. Coleman,et al.  Ferroelectric Behavior in Exfoliated 2D Aurivillius Oxide Flakes of Sub‐Unit Cell Thickness , 2020, Advanced Electronic Materials.

[47]  M. Fiebig,et al.  The ultrathin limit of improper ferroelectricity , 2019, Nature Communications.

[48]  V. Garcia,et al.  Electric and antiferromagnetic chiral textures at multiferroic domain walls , 2019, Nature Materials.

[49]  M. Trassin,et al.  Design and Manipulation of Ferroic Domains in Complex Oxide Heterostructures , 2019, Materials.

[50]  M. Fiebig,et al.  Enhanced Nonlinear Yield from Barium Titanate Metasurface Down to the Near Ultraviolet , 2019, Advanced Optical Materials.

[51]  L. Heyderman,et al.  Chiral domain wall injector driven by spin-orbit torques. , 2019, Nano letters.

[52]  M. Rossell,et al.  Buried In-Plane Ferroelectric Domains in Fe-Doped Single-Crystalline Aurivillius Thin Films , 2019, ACS Applied Electronic Materials.

[53]  J. Hao,et al.  Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit , 2019, Nature Communications.

[54]  M. Fiebig,et al.  High-speed domain wall racetracks in a magnetic insulator , 2019, Nature Communications.

[55]  James J. Steffes,et al.  Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy , 2019, Proceedings of the National Academy of Sciences.

[56]  R. Morandotti,et al.  Enhanced Second Harmonic Generation from Ferroelectric HfO2-Based Hybrid Metasurfaces. , 2019, ACS nano.

[57]  Dmitri E. Nikonov,et al.  Scalable energy-efficient magnetoelectric spin–orbit logic , 2018, Nature.

[58]  Johanna Nordlander,et al.  Probing Ferroic States in Oxide Thin Films Using Optical Second Harmonic Generation , 2018 .

[59]  J. Schmitz Low temperature thin films for next-generation microelectronics (invited) , 2017, Surface and Coatings Technology.

[60]  G. Giovannetti,et al.  Polar metals as electrodes to suppress the critical-thickness limit in ferroelectric nanocapacitors , 2016, Journal of Applied Physics.

[61]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.

[62]  M. Fiebig,et al.  Nanoscale design of polarization in ultrathin ferroelectric heterostructures , 2017, Nature Communications.

[63]  R. Hertel,et al.  Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy , 2017, Nature Communications.

[64]  Zhenyu Zhang,et al.  Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials , 2017, Nature Communications.

[65]  Anand Chandrasekaran,et al.  Ferroelectricity, Antiferroelectricity, and Ultrathin 2D Electron/Hole Gas in Multifunctional Monolayer MXene. , 2017, Nano letters.

[66]  M. Fiebig,et al.  Domain Wall Architecture in Tetragonal Ferroelectric Thin Films , 2017, Advanced materials.

[67]  Patrik Hoffmann,et al.  Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics , 2017, Nanotechnology.

[68]  M. Fiebig,et al.  Tuning the multiferroic mechanisms of TbMnO3 by epitaxial strain , 2016, Scientific Reports.

[69]  R. Grechishkin,et al.  Heat losses in ferroelectric ceramics due to switching processes , 2017 .

[70]  Sergei V. Kalinin,et al.  Chemical State Evolution in Ferroelectric Films during Tip-Induced Polarization and Electroresistive Switching. , 2016, ACS applied materials & interfaces.

[71]  M. Fiebig,et al.  The evolution of multiferroics , 2016 .

[72]  W. Duan,et al.  Discovery of robust in-plane ferroelectricity in atomic-thick SnTe , 2016, Science.

[73]  M. Trassin Low energy consumption spintronics using multiferroic heterostructures , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[74]  Andrew R. Kitahara,et al.  Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy , 2016, Journal of Materials Science.

[75]  M. Fiebig,et al.  Probing Ferroelectric Domain Engineering in BiFeO3 Thin Films by Second Harmonic Generation , 2015, Advanced materials.

[76]  Sergei V. Kalinin,et al.  CuInP₂S₆ Room Temperature Layered Ferroelectric. , 2015, Nano letters.

[77]  Wen‐hua Jiang,et al.  Losses in Ferroelectric Materials. , 2015, Materials science & engineering. R, Reports : a review journal.

[78]  L. Marrucci,et al.  Optical second harmonic imaging as a diagnostic tool for monitoring epitaxial oxide thin-film growth , 2015 .

[79]  Meilin Liu,et al.  Probing electric field control of magnetism using ferromagnetic resonance , 2015, Nature Communications.

[80]  R. Ramesh,et al.  Deterministic switching of ferromagnetism at room temperature using an electric field , 2014, Nature.

[81]  P. Kotula,et al.  Quantifying Compositional Homogeneity in Pb(Zr,Ti)O3 Using Atom Probe Tomography , 2014 .

[82]  Sergei V. Kalinin,et al.  Tuning Susceptibility via Misfit Strain in Relaxed Morphotropic Phase Boundary PbZr1‐xTixO3 Epitaxial Thin Films , 2014 .

[83]  Vincent Garcia,et al.  Ferroelectric tunnel junctions for information storage and processing , 2014, Nature Communications.

[84]  S. Cheong,et al.  Simultaneous imaging of the ferromagnetic and ferroelectric structure in multiferroic heterostructures , 2014 .

[85]  Sergei V. Kalinin,et al.  Electronic Properties of Isosymmetric Phase Boundaries in Highly Strained Ca‐Doped BiFeO3 , 2014, Advanced materials.

[86]  W. Vandervorst,et al.  Laser pulsing of field evaporation in atom probe tomography , 2014 .

[87]  R. Whatmore,et al.  Magnetic Field-Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature , 2013 .

[88]  C. Hwang,et al.  Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature , 2013 .

[89]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[90]  M. Fiebig,et al.  Anisotropic conductance at improper ferroelectric domain walls. , 2011, Nature materials.

[91]  Patrycja Paruch,et al.  Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films , 2011, Advanced materials.

[92]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[93]  Amit Kumar,et al.  Probing Ferroelectrics Using Optical Second Harmonic Generation , 2011 .

[94]  Xiaoqing Pan,et al.  Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures , 2011, 1103.4419.

[95]  W. Jo,et al.  Room temperature ferrimagnetic thin films of the magnetoelectric Ga2−xFexO3 , 2009 .

[96]  R. Ramesh,et al.  A Strain-Driven Morphotropic Phase Boundary in BiFeO3 , 2009, Science.

[97]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[98]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[99]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[100]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[101]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[102]  W. Jo,et al.  Epitaxial thin films of multiferroic GaFeO3 on conducting indium tin oxide (001) buffered yttrium-stabilized zirconia (001) by pulsed laser deposition , 2007 .

[103]  K. Rabe,et al.  Topics in Applied Physics: Preface , 2007 .

[104]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[105]  D. Fong,et al.  IN SITU SYNCHROTRON X-RAY STUDIES OF FERROELECTRIC THIN FILMS , 2006 .

[106]  J. Robertson High dielectric constant oxides , 2004 .

[107]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[108]  Nicola A. Spaldin,et al.  The origin of ferroelectricity in magnetoelectric YMnO3 , 2004, Nature materials.

[109]  E. Matthias,et al.  SHG investigations of the magnetization of thin Ni and Co films on Cu(001) , 1999 .

[110]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[111]  Charles M. Lieber,et al.  Machining Oxide Thin Films with an Atomic Force Microscope: Pattern and Object Formation on the Nanometer Scale , 1992, Science.