Tail Analysis Without Parametric Models: A Worst-Case Perspective

A common bottleneck in evaluating extremal performance measures is that, because of their very nature, tail data are often very limited. The conventional approach selects the best probability distribution from tail data using parametric fitting, but the validity of the parametric choice can be difficult to verify. This paper describes an alternative based on the computation of worst-case bounds under the geometric premise of tail convexity, a feature shared by all common parametric tail distributions. We characterize the optimality structure of the resulting optimization problem, and demonstrate that the worst-case convex tail behavior is in a sense either extremely light tailed or extremely heavy tailed. We develop low-dimensional nonlinear programs that distinguish between the two cases and compute the worst-case bound. We numerically illustrate how the proposed approach can give more reliable performances than conventional parametric methods. The online appendix is available at https://doi.org/10.1287/...

[1]  Paul Glasserman,et al.  LARGE DEVIATIONS IN MULTIFACTOR PORTFOLIO CREDIT RISK , 2007 .

[2]  Laurent El Ghaoui,et al.  Robust Control of Markov Decision Processes with Uncertain Transition Matrices , 2005, Oper. Res..

[3]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[4]  José H. Dulá,et al.  Bounding separable recourse functions with limited distribution information , 1991, Ann. Oper. Res..

[5]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[6]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[7]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[8]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[9]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Suyeon Kang,et al.  Parameter and quantile estimation for the generalized Pareto distribution in peaks over threshold framework , 2017 .

[11]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[12]  Philip Heidelberger,et al.  Fast Simulation of Highly Dependable Systems with General Failure and Repair Processes , 1993, IEEE Trans. Computers.

[13]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[14]  Laurent El Ghaoui,et al.  Robust Solutions to Markov Decision Problems with Uncertain Transition Matrices , 2005 .

[15]  Jon A Wellner,et al.  NONPARAMETRIC ESTIMATION OF MULTIVARIATE CONVEX-TRANSFORMED DENSITIES. , 2009, Annals of statistics.

[16]  Garud Iyengar,et al.  Robust Dynamic Programming , 2005, Math. Oper. Res..

[17]  Jan Beirlant,et al.  Modeling large claims in non-life insurance , 1992 .

[18]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[19]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[20]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[21]  A. McNeil Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.

[22]  Peter W. Glynn,et al.  Consistency of Multidimensional Convex Regression , 2012, Oper. Res..

[23]  Ian R. Petersen,et al.  Minimax optimal control of stochastic uncertain systems with relative entropy constraints , 2000, IEEE Trans. Autom. Control..

[24]  Paul Glasserman,et al.  Fast Simulation of Multifactor Portfolio Credit Risk , 2008, Oper. Res..

[25]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[26]  James E. Smith,et al.  Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis , 1995, Oper. Res..

[27]  Dragan Cvetković,et al.  Modeling and Computer Simulation , 2019 .

[28]  E. Seijo,et al.  Nonparametric Least Squares Estimation of a Multivariate Convex Regression Function , 2010, 1003.4765.

[29]  W. Lieberman The Theory and Practice of Revenue Management , 2005 .

[30]  M. Cule,et al.  Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.

[31]  Alan F. Karr,et al.  Extreme Points of Certain Sets of Probability Measures, with Applications , 1983, Math. Oper. Res..

[32]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[33]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[34]  Gerhard Winkler,et al.  Extreme Points of Moment Sets , 1988, Math. Oper. Res..

[35]  Paul Glasserman,et al.  Importance Sampling for Portfolio Credit Risk , 2005, Manag. Sci..

[36]  Philip Heidelberger,et al.  Fast simulation of rare events in queueing and reliability models , 1993, TOMC.

[37]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[38]  Ioana Popescu,et al.  A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions , 2005, Math. Oper. Res..

[39]  Roger J.-B. Wets,et al.  Computing Bounds for Stochastic Programming Problems by Means of a Generalized Moment Problem , 1987, Math. Oper. Res..

[40]  R. Koenker,et al.  QUASI-CONCAVE DENSITY ESTIMATION , 2010, 1007.4013.

[41]  D. Denisov,et al.  Large deviations for random walks under subexponentiality: The big-jump domain , 2007, math/0703265.

[42]  Sidney I. Resnick,et al.  Tail estimates motivated by extreme-value theory , 1984, Advances in Applied Probability.

[43]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[44]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[45]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[46]  David B. Dunson,et al.  Multivariate convex regression with adaptive partitioning , 2011, J. Mach. Learn. Res..

[47]  James A. Bucklew,et al.  Introduction to Rare Event Simulation , 2010 .