Numerical electromagnetic frequency domain analysis with discrete exterior calculus

Abstract In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.

[1]  Fernando L. Teixeira,et al.  Lattice Maxwell's Equations , 2014 .

[2]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[3]  Jerrold E. Marsden,et al.  Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms , 2007, 0707.4470.

[4]  Tuomo Rossi,et al.  Comparison of discrete exterior calculus and discrete-dipole approximation for electromagnetic scattering , 2014 .

[5]  J. Räbinä On a numerical solution of the Maxwell equations by discrete exterior calculus , 2014 .

[6]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[7]  F. Teixeira,et al.  Geometric finite element discretization of Maxwell equations in primal and dual spaces , 2005, physics/0503013.

[8]  Tuomo Rossi,et al.  Efficient Time Integration of Maxwell's Equations with Generalized Finite Differences , 2015, SIAM J. Sci. Comput..

[9]  Martin Campos Pinto,et al.  Charge-conserving FEM–PIC schemes on general grids☆ , 2014 .

[10]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[11]  Fernando L. Teixeira,et al.  Lattice Maxwell's Equations (Invited Paper) , 2014 .

[12]  S. Gedney,et al.  Full wave analysis of microwave monolithic circuit devices using a generalized Yee-algorithm based on an unstructured grid , 1996 .

[13]  Weng Cho Chew,et al.  ELECTROMAGNETIC THEORY ON A LATTICE , 1994 .

[14]  G. Deschamps Electromagnetics and differential forms , 1981, Proceedings of the IEEE.

[15]  Anil N. Hirani,et al.  Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes , 2015, J. Comput. Phys..

[16]  David Eppstein,et al.  Dihedral bounds for mesh generation in high dimensions , 1995, SODA '95.

[17]  K. Kormann,et al.  GEMPIC: geometric electromagnetic particle-in-cell methods , 2016, Journal of Plasma Physics.

[18]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[19]  Fernando L. Teixeira,et al.  Local, Explicit, and Charge-Conserving Electromagnetic Particle-In-Cell Algorithm on Unstructured Grids , 2016, IEEE Transactions on Plasma Science.

[20]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[21]  Zhaoming Zhu,et al.  Full-vectorial finite-difference analysis of microstructured optical fibers. , 2002, Optics express.

[22]  Fernando L. Teixeira,et al.  Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids: A geometric perspective , 2014, Comput. Phys. Commun..

[23]  F. Teixeira,et al.  On the Degrees of Freedom of Lattice Electrodynamics , 2008 .

[24]  Richard W. Ziolkowski,et al.  A Three-Dimensional Modified Finite Volume Technique for Maxwell's Equations , 1990 .

[25]  W. Chew,et al.  Lattice electromagnetic theory from a topological viewpoint , 1999 .

[26]  Jon P. Webb,et al.  Absorbing boundary conditions for the finite element solution of the vector wave equation , 1989 .

[27]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[28]  Alain Bossavit,et al.  Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches , 2000 .

[29]  Jin-Fa Lee,et al.  Finite-element analysis of arbitrarily shaped cavity resonators using H/sup 1/(curl) elements , 1997 .

[30]  T. Tarhasaari,et al.  Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .

[31]  Karl F. Warnick,et al.  Teaching Electromagnetic Field Theory Using Differential Forms , 1997, Teaching Electromagnetics.

[32]  Weng Cho Chew,et al.  Generalized Modal Expansion and Reduced Modal Representation of 3-D Electromagnetic Fields , 2014, IEEE Transactions on Antennas and Propagation.

[33]  M. Clemens,et al.  Discrete Electromagnetism With the Finite Integration Technique - Abstract , 2001 .

[34]  S. Gedney,et al.  Numerical stability of nonorthogonal FDTD methods , 2000 .

[35]  Anil N. Hirani,et al.  Delaunay Hodge star , 2012, Comput. Aided Des..