The International Pulsar Timing Array: First Data Release

The highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available on-line) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limits

[1]  R. Karuppusamy,et al.  LEAP: the large European array for pulsars , 2015, 1511.06597.

[2]  R. Manchester,et al.  A study of spatial correlations in pulsar timing array data , 2015, 1510.02363.

[3]  J. Gair,et al.  European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.

[4]  Sabine Fenstermacher Handbook Of Pulsar Astronomy , 2016 .

[5]  M. Bailes,et al.  Gravitational waves from binary supermassive black holes missing in pulsar observations , 2015, Science.

[6]  A. Noutsos,et al.  A LOFAR census of millisecond pulsars , 2015, 1508.02948.

[7]  J. Gair,et al.  Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background. , 2015, Physical review letters.

[8]  Y. Levin,et al.  PULSAR OBSERVATIONS OF EXTREME SCATTERING EVENTS , 2015, 1506.07948.

[9]  D. Stinebring,et al.  THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.

[10]  P. Schwaller Gravitational Waves from a Dark Phase Transition. , 2015, Physical review letters.

[11]  Delphine Perrodin,et al.  European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.

[12]  Z. Arzoumanian,et al.  TESTING THEORIES OF GRAVITATION USING 21-YEAR TIMING OF PULSAR BINARY J1713+0747 , 2015, 1504.00662.

[13]  D. Stinebring,et al.  FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING , 2015, 1503.08491.

[14]  J. Gair,et al.  Expected properties of the first gravitational wave signal detected with pulsar timing arrays , 2015, 1503.04803.

[15]  Y. Levin,et al.  Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array , 2014, 1410.3323.

[16]  Di Li,et al.  The five-hundred-meter aperture spherical radio telescope (FAST) project , 2011, 2015 International Topical Meeting on Microwave Photonics (MWP).

[17]  D. Stinebring,et al.  GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES , 2014 .

[18]  M. Bailes,et al.  An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set , 2014, 1408.5129.

[19]  N. Porayko,et al.  Constraints on ultralight scalar dark matter from pulsar timing , 2014, 1408.4670.

[20]  G. Desvignes,et al.  A 24 HR GLOBAL CAMPAIGN TO ASSESS PRECISION TIMING OF THE MILLISECOND PULSAR J1713+0747 , 2014, 1408.1694.

[21]  A. Noutsos,et al.  The LOFAR pilot surveys for pulsars and fast radio transients , 2014, 1408.0411.

[22]  D. Lorimer,et al.  Why the distance of PSR J0218+4232 does not challenge pulsar emission theories , 2014, 1408.0281.

[23]  Alan E. E. Rogers,et al.  THE LOW-FREQUENCY CHARACTERISTICS OF PSR J0437−4715 OBSERVED WITH THE MURCHISON WIDE-FIELD ARRAY , 2014, 1407.4745.

[24]  G. Desvignes,et al.  Measuring pulse times of arrival from broad-band pulsar observations , 2014, 1407.3827.

[25]  M. Vallisneri,et al.  New advances in the Gaussian-process approach to pulsar-timing data analysis , 2014, 1407.1838.

[26]  D. Stinebring,et al.  MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS , 2014, 1407.0171.

[27]  A. J. Ford,et al.  THE GREEN BANK NORTHERN CELESTIAL CAP PULSAR SURVEY. I. SURVEY DESCRIPTION, DATA ANALYSIS, AND INITIAL RESULTS , 2014, 1406.5214.

[28]  Y. Levin,et al.  Limitations in timing precision due to single-pulse shape variability in millisecond pulsars , 2014, 1406.4716.

[29]  R. M. Campbell,et al.  VERY LONG BASELINE INTERFEROMETRY MEASURED PROPER MOTION AND PARALLAX OF THE γ-RAY MILLISECOND PULSAR PSR J0218+4232 , 2014, 1402.2380.

[30]  S. Ransom,et al.  ELEMENTARY WIDEBAND TIMING OF RADIO PULSARS , 2014, 1402.1672.

[31]  F. Feroz,et al.  TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.

[32]  D. Stinebring Effects of the interstellar medium on detection of low-frequency gravitational waves , 2013, 1310.8316.

[33]  P. Demorest,et al.  CYCLIC SPECTROSCOPY OF THE MILLISECOND PULSAR, B1937+21 , 2013, 1310.3535.

[34]  R. Manchester The International Pulsar Timing Array , 2013, 1309.7392.

[35]  V. Rubakov,et al.  Pulsar timing signal from ultralight scalar dark matter , 2013, 1309.5888.

[36]  F. Schinzel,et al.  DETECTION AND FLUX DENSITY MEASUREMENTS OF THE MILLISECOND PULSAR J2145−0750 BELOW 100 MHz , 2013, 1309.0558.

[37]  D. Lorimer,et al.  The Northern High Time Resolution Universe pulsar survey - I. Setup and initial discoveries , 2013, 1308.0378.

[38]  M. Mclaughlin,et al.  GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY , 2013, 1307.8142.

[39]  X. Siemens,et al.  The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.

[40]  Zong-Hong Zhu,et al.  Constraints of relic gravitational waves by pulsar timing arrays: Forecasts for the FAST and SKA projects , 2013, 1303.6718.

[41]  J. Anderson,et al.  Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes , 2013, 1303.6230.

[42]  D. Lorimer,et al.  The pulsar spectral index distribution , 2013, 1302.2053.

[43]  P. Demorest,et al.  Improving the precision of pulsar timing through polarization statistics , 2013, 1301.2374.

[44]  W. V. Straten,et al.  High-fidelity Radio Astronomical Polarimetry Using a Millisecond Pulsar as a Polarized Reference Source , 2012, 1212.3446.

[45]  S. Burke-Spolaor,et al.  Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing , 2012, 1211.5887.

[46]  A. Sesana Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band , 2012, 1211.5375.

[47]  Chongqing,et al.  The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.

[48]  Y. Levin,et al.  Development of a Pulsar-Based Time-Scale , 2012, 1208.3560.

[49]  D. Lorimer,et al.  ON PULSAR DISTANCE MEASUREMENTS AND THEIR UNCERTAINTIES , 2012, 1206.0428.

[50]  P. Freire,et al.  The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity , 2012, 1205.1450.

[51]  K. Lee,et al.  The optimal schedule for pulsar timing array observations , 2012, 1204.4321.

[52]  B. Stappers,et al.  Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array , 2012, 1201.2419.

[53]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[54]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[55]  J. Cordes,et al.  Profile shape stability and phase jitter analyses of millisecond pulsars , 2011, 1110.4759.

[56]  S. Ransom,et al.  HIGH-PRECISION TIMING OF FIVE MILLISECOND PULSARS: SPACE VELOCITIES, BINARY EVOLUTION, AND EQUIVALENCE PRINCIPLES , 2011, 1109.5638.

[57]  G. Hobbs,et al.  High signal‐to‐noise ratio observations and the ultimate limits of precision pulsar timing , 2011, 1108.0812.

[58]  R. N. Manchester,et al.  Pulsar timing analysis in the presence of correlated noise , 2011, 1107.5366.

[59]  J. Cordes,et al.  Prospects for high-precision pulsar timing , 2011, 1107.3086.

[60]  P. Demorest Cyclic spectral analysis of radio pulsars , 2011, 1106.3345.

[61]  A. Noutsos,et al.  Observing pulsars and fast transients with LOFAR , 2011, 1104.1577.

[62]  G. Desvignes,et al.  Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data , 2011, 1103.0576.

[63]  K. Lee,et al.  Gravitational wave astronomy of single sources with a pulsar timing array , 2011, 1103.0115.

[64]  J. Cordes,et al.  ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS , 2010, 1010.4794.

[65]  S. Burke-Spolaor,et al.  MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING , 2010, 1008.3607.

[66]  S. Burke-Spolaor,et al.  The High Time Resolution Universe Pulsar Survey - I. System configuration and initial discoveries , 2010, 1006.5744.

[67]  L. Finn,et al.  DETECTION, LOCALIZATION, AND CHARACTERIZATION OF GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY , 2010, 1004.3499.

[68]  D. Thompson,et al.  DISCOVERY OF PULSED γ-RAYS FROM PSR J0034−0534 WITH THE FERMI LARGE AREA TELESCOPE: A CASE FOR CO-LOCATED RADIO AND γ-RAY EMISSION REGIONS , 2010 .

[69]  I. Cognard,et al.  Long-term timing of four millisecond pulsars , 2010, 1003.0418.

[70]  France,et al.  A PRECISE MASS MEASUREMENT OF THE INTERMEDIATE-MASS BINARY PULSAR PSR J1802 − 2124 , 2010, 1002.0514.

[71]  A. Lyne,et al.  An analysis of the timing irregularities for 366 pulsars , 2009, 0912.4537.

[72]  S. Burke-Spolaor,et al.  Status update of the Parkes pulsar timing array , 2009, 0912.2692.

[73]  Y. Levin,et al.  Gravitational-Wave Memory and Pulsar Timing Arrays , 2009, 0909.0954.

[74]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[75]  N. Seto Search for memory and inspiral gravitational waves from supermassive binary black holes with pulsar timing arrays , 2009, 0909.1379.

[76]  K. Postnov,et al.  Observing gravitational wave bursts in pulsar timing measurements , 2009, 0909.0742.

[77]  S. Burke-Spolaor,et al.  Timing stability of millisecond pulsars and prospects for gravitational-wave detection , 2009, 0908.0244.

[78]  G. Desvignes,et al.  Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant , 2009, 0908.0285.

[79]  W. Folkner,et al.  The Planetary and Lunar Ephemeris DE 421 , 2009 .

[80]  Jean-Luc Starck,et al.  PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE FERMI LARGE AREA TELESCOPE , 2009, The Astrophysical Journal.

[81]  Marc Favata NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS , 2009, 0902.3660.

[82]  A. Vecchio,et al.  Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.

[83]  A. Deller,et al.  Extremely High Precision VLBI Astrometry of PSR J0437–4715 and Implications for Theories of Gravity , 2008, 0808.1594.

[84]  S. Kulkarni,et al.  Precision Timing of PSR J0437–4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton’s Gravitational Constant , 2008, 0801.2589.

[85]  D. Stinebring,et al.  Time Variability of Interstellar Scattering and Improvements to Pulsar Timing , 2008 .

[86]  Alessandra Buonanno,et al.  Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: implications for the early universe , 2007, 0708.2279.

[87]  G. Hobbs,et al.  An Improved Solar Wind Electron Density Model for Pulsar Timing , 2007, 0709.0135.

[88]  S. Johnston,et al.  The Magnetic Field of the Solar Corona from Pulsar Observations , 2007, 0705.1869.

[89]  N. Bhat,et al.  Dispersion measure variations and their effect on precision pulsar timing , 2007, astro-ph/0702366.

[90]  M. Enoki,et al.  The Effect of Orbital Eccentricity on Gravitational Wave Background Radiation from Supermassive Black Hole Binaries , 2006, astro-ph/0609377.

[91]  Discovery of Five Recycled Pulsars in a High Galactic Latitude Survey , 2006, astro-ph/0609448.

[92]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[93]  M. Mclaughlin,et al.  The Parkes Multibeam Pulsar Survey - VI. Discovery and timing of 142 pulsars and a Galactic population analysis , 2006, astro-ph/0607640.

[94]  S. Ord,et al.  High‐precision baseband timing of 15 millisecond pulsars , 2006 .

[95]  B. C. Joshi,et al.  The Parkes High-Latitude pulsar survey , 2006 .

[96]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[97]  W. V. Straten,et al.  Radio astronomical polarimetry and high-precision pulsar timing , 2005, astro-ph/0510334.

[98]  B. Reid,et al.  Arecibo Pulsar Survey Using ALFA. I. Survey Strategy and First Discoveries , 2005, astro-ph/0509732.

[99]  D. Nice,et al.  The Parallax and Proper Motion of PSR J0030+0451 , 2005, astro-ph/0601521.

[100]  J. Cordes,et al.  A 2.1 M☉ Pulsar Measured by Relativistic Orbital Decay , 2005, astro-ph/0508050.

[101]  P. Gregory,et al.  Discovery of Three Wide-Orbit Binary Pulsars: Implications for Binary Evolution and Equivalence Principles , 2005, astro-ph/0506188.

[102]  Fredrick A. Jenet,et al.  Detecting the Stochastic Gravitational Wave Background Using Pulsar Timing , 2005 .

[103]  L. Grishchuk Relic gravitational waves and cosmology , 2005, gr-qc/0504018.

[104]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[105]  D. Nice,et al.  Masses, Parallax, and Relativistic Timing of the PSR J1713+0747 Binary System , 2004, astro-ph/0410488.

[106]  D. Lorimer,et al.  Handbook of Pulsar Astronomy , 2004 .

[107]  A. Wolszczan,et al.  Shapiro Delay in the PSR J1640+2224 Binary System , 2004, astro-ph/0411742.

[108]  A. Lyne,et al.  Long-term timing observations of 374 pulsars , 2004 .

[109]  M. Mclaughlin,et al.  The Parkes Multibeam Pulsar Survey - V. Finding binary and millisecond pulsars , 2004, astro-ph/0408228.

[110]  B. C. Joshi,et al.  The Parkes multibeam pulsar survey – IV. Discovery of 180 pulsars and parameters for 281 previously known pulsars , 2004, astro-ph/0405364.

[111]  R. Manchester,et al.  psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.

[112]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[113]  S. Anderson,et al.  PSR J1909–3744: A Binary Millisecond Pulsar with a Very Small Duty Cycle , 2003, astro-ph/0311415.

[114]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.

[115]  I. Cognard,et al.  A 3 Year Long Extreme Scattering Event in the Direction of the Millisecond Pulsar J1643–1224 , 2003 .

[116]  Z. Arzoumanian,et al.  Probing the Masses of the PSR J0621+1002 Binary System through Relativistic Apsidal Motion , 2002, astro-ph/0208281.

[117]  R. Edwards,et al.  Recycled Pulsars Discovered at High Radio Frequency , 2001, astro-ph/0102026.

[118]  D. Nice,et al.  On the Mass and Inclination of the PSR J2019+2425 Binary System , 2000, astro-ph/0010489.

[119]  T. Damour,et al.  Gravitational wave bursts from cosmic strings , 2000, Physical review letters.

[120]  D. Nice,et al.  Timing Observations of Four Millisecond Pulsars with the Arecibo and Effelsberg Radio Telescopes , 2000 .

[121]  A. Somer New Pulsars from Arecibo Drift Scan Search , 1999, astro-ph/9911222.

[122]  S. Anderson,et al.  Millisecond pulsar velocities , 1998, astro-ph/9811398.

[123]  R. Manchester,et al.  Spectra of Southern Pulsars , 1998, astro-ph/9805241.

[124]  Astrophysics,et al.  The Characteristics of Millisecond Pulsar Emission. I. Spectra, Pulse Shapes, and the Beaming Fraction , 1998, astro-ph/9801177.

[125]  D. Lorimer,et al.  Discovery of Four Isolated Millisecond Pulsars , 1997 .

[126]  S. Anderson,et al.  The Proper Motion and Parallax of PSR J0437–4715 , 1997 .

[127]  D. Lorimer,et al.  Discovery of four binary millisecond pulsars , 1996 .

[128]  T. Prince,et al.  A Survey for Millisecond Pulsars , 1996 .

[129]  J. A. Shrauner,et al.  Princeton-Arecibo Declination-Strip Survey for Millisecond Pulsars. I. , 1996 .

[130]  Sergei M. Kopeikin Proper Motion of Binary Pulsars as a Source of Secular Variations of Orbital Parameters , 1996 .

[131]  D. Nice,et al.  A Search for Millisecond Pulsars at Galactic Latitudes -50 degrees < B < -20 degrees , 1996 .

[132]  D. A. Frail,et al.  A Very Luminous Binary Millisecond Pulsar , 1995 .

[133]  J. Cordes,et al.  A Millisecond Pulsar in a 6 Hour Orbit: PSR J0751+1807 , 1995 .

[134]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[135]  D. Lorimer,et al.  PSR:J1012+5307:a 5.26-ms pulsar in a 14.5-h binary system , 1995 .

[136]  D. Nice,et al.  PSR J2019+2425 and PSR J2322+2057 and the proper motions of millisecond pulsars , 1995 .

[137]  Andrew G. Lyne,et al.  Four new millisecond pulsars in the galactic disk , 1995 .

[138]  R. Romani,et al.  Ultra--Low-Frequency Gravitational Radiation from Massive Black Hole Binaries , 1994, astro-ph/9412038.

[139]  S. Kopeikin On possible implications of orbital parallaxes of wide orbit binary pulsars and their measurability , 1995 .

[140]  V. Kaspi,et al.  High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21 , 1994 .

[141]  D. Lorimer,et al.  Discovery of Three Binary Millisecond Pulsars , 1994 .

[142]  D. Nice,et al.  Discovery of two fast-rotating pulsars , 1993 .

[143]  F. Camilo,et al.  A New Binary Millisecond Pulsar , 1993 .

[144]  D. Lorimer,et al.  Discovery of a very bright, nearby binary millisecond pulsar , 1993, Nature.

[145]  A. Fruchter,et al.  Two newly discovered millisecond pulsars , 1993 .

[146]  J. H. Taylor,et al.  Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[147]  J. Cordes,et al.  Interstellar propagation effects and the precision of pulsar timing , 1990 .

[148]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[149]  D. Frail,et al.  A critical evaluation of pulsar distance measurements , 1990 .

[150]  B. J. Rickett,et al.  Radio propagation through the turbulent interstellar plasma. , 1990 .

[151]  R. Romani Timing a Millisecond Pulsar Array , 1989 .

[152]  A. Lyne,et al.  The discovery of a millisecond pulsar in the globular cluster M28 , 1987, Nature.

[153]  D. Stinebring,et al.  New millisecond pulsar in a binary system , 1986, Nature.

[154]  F. Fauci,et al.  Discovery of a 6.1-ms binary pulsar PSR1953 + 29 , 1983, Nature.

[155]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[156]  S. Kulkarni,et al.  A millisecond pulsar , 1982, Nature.

[157]  R. B. Partridge,et al.  OPTICAL TIMING OF THE CRAB PULSAR, NP 0532. , 1972 .