Compressive Single-pixel Fourier Transform Imaging Using Structured Illumination

Single Pixel (SP) imaging is now a reality in many applications, e.g., biomedical ultrathin endoscope and fluorescent spectroscopy. In this context, many schemes exist to improve the light throughput of these device, e.g., using structured illumination driven by compressive sensing theory. In this work, we consider the combination of SP imaging with Fourier Transform Interferometry (SP-FTI) to reach high-resolution HyperSpectral (HS) imaging, as desirable, e.g., in fluorescent spectroscopy. While this association is not new, we here focus on optimizing the spatial illumination, structured as Hadamard patterns, during the optical path progression. We follow a variable density sampling strategy for space-time coding of the light illumination, and show theoretically and numerically that this scheme allows us to reduce the number of measurements and light-exposure of the observed object compared to conventional compressive SP-FTI.

[1]  Laurent Jacques,et al.  Multilevel Illumination Coding for Fourier Transform Interferometry in Fluorescence Spectroscopy , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[2]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[3]  B. Fino Relations between Haar and Walsh/Hadamard transforms , 1972 .

[4]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[5]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[6]  Laurent Jacques,et al.  Compressive Imaging and Characterization of Sparse Light Deflection Maps , 2014, SIAM J. Imaging Sci..

[7]  Bogdan J. Falkowski,et al.  Walsh-like functions and their relations , 1996 .

[8]  José M. Bioucas-Dias,et al.  Compressive Hyperspectral Imaging: Fourier Transform Interferometry meets Single Pixel Camera , 2018, ArXiv.

[9]  Rachel Ward,et al.  Stable and Robust Sampling Strategies for Compressive Imaging , 2012, IEEE Transactions on Image Processing.

[10]  A. Moshtaghpour,et al.  A Variable Density Sampling Scheme for Compressive Fourier Transform Interferometry , 2018, SIAM J. Imaging Sci..

[11]  Laurent Jacques,et al.  Compressive Hyperspectral Imaging using Coded Fourier Transform Interferometry , 2017 .

[12]  E. Candès,et al.  Compressive fluorescence microscopy for biological and hyperspectral imaging , 2012, Proceedings of the National Academy of Sciences.

[13]  Esben Ravn Andresen,et al.  Nonlinear imaging through a Fermat's golden spiral multicore fiber. , 2018, Optics letters.

[14]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[15]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[16]  Laurent Jacques,et al.  Coded-Illumination Fourier Transform Interferometry , 2016 .

[17]  S. Agaian Hadamard Matrices and Their Applications , 1985 .

[18]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[19]  Pekka Ruusuvuori,et al.  Benchmark set of synthetic images for validating cell image analysis algorithms , 2008, 2008 16th European Signal Processing Conference.

[20]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[21]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[22]  Laurent Jacques,et al.  Compressive Sampling Approach for Image Acquisition with Lensless Endoscope , 2018, ArXiv.

[23]  Laurent Jacques,et al.  Compressive Hyperspectral Imaging with Fourier Transform Interferometry , 2016 .

[24]  Ben Adcock,et al.  On asymptotic structure in compressed sensing , 2014, ArXiv.

[25]  Qing Ye,et al.  Hyperspectral imaging using the single-pixel Fourier transform technique , 2017, Scientific Reports.