Investigation of the potential of thermophotovoltaic heat recovery for the Turkish industrial sector

Abstract Thermophotovoltaics (TPV) are the use of the photovoltaic effect to generate electricity from a high-temperature thermal (infrared) source. This study deals with to provide an overview of heat recovery by TPV from industrial high-temperature processes in Turkish industrial sector. The paper reviews the relevant facts about TPV technology and the high-temperature industry and identifies three principle locations for TPV heat recovery. For each location, one example process is assessed in terms of applicability of TPV impact on the existing process and power scale. Knowledge of these factors should contribute to the design of an optimum TPV system. In the TIS, the total technical–potential energy recovery in the high-temperature industry using deployed and demonstrated heat recovery devices for product, flue gas, and wall heat recovery was estimated as 447.8 PJ/year. However, an estimation from 22.40 PJ/year to 67.45 PJ/year can be achieved according to the TPV efficiencies. Also, the paper estimates the range of possible energy savings and the reduction in CO emission using TPV in the high-temperature industry. It is expected that this study will be very beneficial in developing energy policies of countries in terms of the usage of waste energy efficiency.

[1]  Ugur Ortabasi,et al.  Rugate Technology For Thermophotovoltaic (TPV) Applications: A New Approach To Near Perfect Filter Performance , 2003 .

[2]  James E. Avery,et al.  Commercial GaSb cell and circuit development for the Midnight Sun® TPV stove , 1999 .

[3]  Timothy J. Coutts,et al.  An overview of thermophotovoltaic generation of electricity , 1999 .

[4]  Thomas Bauer,et al.  Thermophotovoltaics: Basic Principles and Critical Aspects of System Design , 2011 .

[5]  Ramon U. Martinelli,et al.  Thermophotovoltaic system configurations and spectral control , 2003 .

[6]  Michael G. Mauk,et al.  Survey of Thermophotovoltaic (TPV) Devices , 2006 .

[7]  Gianpiero Colangelo,et al.  Experimental study of a burner with high temperature heat recovery system for TPV applications , 2006 .

[8]  Martin A. Green,et al.  Clean electricity from photovoltaics , 2001 .

[9]  Wenming Yang,et al.  Microscale combustion research for application to micro thermophotovoltaic systems , 2003 .

[10]  Mikhail Korobitsyn,et al.  Industrial applications of the air bottoming cycle , 2002 .

[11]  Arif Hepbasli,et al.  Parametrical investigation of the effect of dead (reference) state on energy and exergy utilization efficiencies of residential–commercial sectors: A review and an application , 2007 .

[12]  Steven A. Ringel,et al.  Metamorphic In0.7Al0.3As/In0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyP1−y buffers by molecular beam epitaxy , 2009 .

[13]  F. Bouzid,et al.  Performance evaluation of a GaSb thermophotovoltaic converter , 2015 .

[14]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[15]  Timothy J. Coutts,et al.  A review of progress in thermophotovoltaic generation of electricity fna fna I began writing this pa , 1999 .

[16]  David Reay,et al.  Opportunities for low-grade heat recovery in the UK food processing industry , 2013 .

[17]  Sam Brown Single-site and industrial-scale schemes , 1996 .

[18]  S. John,et al.  Metallic photonic-band-gap filament architectures for optimized incandescent lighting , 2008 .

[19]  Serge Luryi,et al.  Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminescence , 2003 .

[20]  A. Krier Mid-infrared Semiconductor Optoelectronics , 2006 .

[21]  Edward F. Doyle,et al.  Operating experience of a portable thermophotovoltaic power supply , 1999 .

[22]  Lockheed Martin,et al.  Interference Filters for Thermophotovoltaic Applications , 1999 .

[23]  J. O. Mur-Miranda,et al.  Power MEMS and microengines , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[24]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[25]  James E. Avery,et al.  TPV Tube Generators for Apartment Building and Industrial Furnace Applications , 2003 .

[26]  Masafumi Yamaguchi,et al.  A Germanium Back Contact Type Thermophotovoltaic Cell , 2007 .

[27]  Anthony Catalano Thermophotovoltaics: A new paradigm for power generation? , 1996 .

[28]  Robert U. Ayres,et al.  Exergy, power and work in the US economy, 1900–1998 , 2003 .

[29]  Crispin L. DeBellis,et al.  Component development for 500 watt diesel fueled portable thermophotovoltaic (TPV) power supply , 1999 .

[30]  Guido Guazzoni,et al.  Army thermophotovoltaic efforts , 1999 .

[31]  Edward J. Gratrix,et al.  Optical coatings for thermophotovoltaic spectral control. , 2006 .

[32]  Gao Min,et al.  Evaluation of thermoelectric modules for power generation , 1998 .

[33]  G. M. Reistad,et al.  AVAILABLE ENERGY CONVERSION AND UTILIZATION IN THE UNITED STATES , 1975 .

[34]  Michael Seal,et al.  Use of a thermophotovoltaic generator in a hybrid electric vehicle , 1999 .

[35]  D. M. DePoy,et al.  Antimony Selenide in Multilayer Coatings , 2001 .

[36]  M. Bosi,et al.  The potential of III‐V semiconductors as terrestrial photovoltaic devices , 2007 .

[37]  M. Soljačić,et al.  Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics , 2013, Proceedings of the National Academy of Sciences.

[38]  Ivan Celanovic,et al.  Two-dimensional tungsten photonic crystals as selective thermal emitters , 2008 .

[39]  David J. Perreault,et al.  Resonant-cavity enhanced thermal emission , 2005 .

[40]  Keith W. Lindler,et al.  Combustor/emitter design tool for a thermophotovoltaic energy converter , 1998 .

[41]  Steven G. Johnson,et al.  Design and global optimization of high-efficiency thermophotovoltaic systems. , 2010, Optics express.

[42]  A. Fahrenbruch,et al.  Fundamentals Of Solar Cells: Photovoltaic Solar Energy Conversion , 2012 .

[43]  S. Luryi,et al.  Quaternary InGaAsSb Thermophotovoltaic Diodes , 2006, IEEE Transactions on Electron Devices.

[44]  Nicola Pearsall,et al.  The potential of thermophotovoltaic heat recovery for the UK industry , 2004 .

[45]  J. D. Beer FUTURE TECHNOLOGIES FOR ENERGY-EFFICIENT IRON AND STEEL MAKING , 1998 .

[46]  Kazumi Wada,et al.  Optical characteristics of one-dimensional Si∕SiO2 photonic crystals for thermophotovoltaic applications , 2005 .

[47]  Valery D. Rumyantsev,et al.  Solar Thermophotovoltaic Converters: Efficiency Potentialities , 2004 .

[48]  K. Qiu,et al.  Thermophotovoltaic generation of electricity in a gas fired heater: Influence of radiant burner configurations and combustion processes , 2003 .

[49]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[50]  Kenneth W. Stone,et al.  Testing and modeling of a solar thermophotovoltaic power system , 2008 .

[51]  J. Larjola,et al.  Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC) , 1995 .

[52]  Robin Huang,et al.  Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators , 2010 .

[53]  Jeffrey H. Lang,et al.  MICRO-HEAT ENGINES, GAS TURBINES, AND ROCKET ENGINES -THE MIT MICROENGINE PROJECT- , 1997 .

[54]  Asfaw Beyene,et al.  Heat recovery from automotive engine , 2009 .

[55]  Huafeng Liang,et al.  Performance analysis of thermophotovoltaic system with an equivalent cut-off blackbody emitter , 2010 .

[56]  Stephen Loughin,et al.  MBE growth of GaInAsSb p/n junction diodes for thermophotovoltaic applications , 1996 .

[57]  Hyun-Yong Lee,et al.  Multiple-wavelength-transmission filters based on Si-SiO2 one-dimensional photonic crystals , 2005 .