LED lamps enhance somatic embryo maturation in association with the differential accumulation of proteins in the Carica papaya L. 'Golden' embryogenic callus.

[1]  D. Dudits,et al.  Epigenetic Clues to Better Understanding of the Asexual Embryogenesis in planta and in vitro , 2019, Front. Plant Sci..

[2]  Rohini Bhat,et al.  Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions , 2019, Critical reviews in biotechnology.

[3]  P. Suárez-López,et al.  Under a New Light: Regulation of Light-Dependent Pathways by Non-coding RNAs , 2018, Front. Plant Sci..

[4]  J. Thelen,et al.  Embryogenic Competence Acquisition in Sugar Cane Callus Is Associated with Differential H+-Pump Abundance and Activity. , 2018, Journal of proteome research.

[5]  Shih-Long Tu,et al.  Alternative Splicing and Cross-Talk with Light Signaling. , 2018, Plant & cell physiology.

[6]  C. Santa-Catarina,et al.  Insights from Proteomic Studies into Plant Somatic Embryogenesis , 2018, Proteomics.

[7]  Z. Lai,et al.  Effects of blue light on flavonoid accumulation linked to the expression of miR393, miR394 and miR395 in longan embryogenic calli , 2018, PloS one.

[8]  V. Silveira,et al.  Morphological analyses and variation in carbohydrate content during the maturation of somatic embryos of Carica papaya , 2018, Physiology and Molecular Biology of Plants.

[9]  X. Zhang,et al.  Microfilament Depolymerization Is a Pre-requisite for Stem Cell Formation During In vitro Shoot Regeneration in Arabidopsis , 2017, Front. Plant Sci..

[10]  V. Silveira,et al.  Comparative proteomics analysis of the effect of combined red and blue lights on sugarcane somatic embryogenesis , 2017, Acta Physiologiae Plantarum.

[11]  Nathan D. Miller,et al.  Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development1[OPEN] , 2016, Plant Physiology.

[12]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2015, Nucleic Acids Res..

[13]  S. Braybrook,et al.  How to let go: pectin and plant cell adhesion , 2015, Front. Plant Sci..

[14]  S. Tittmann,et al.  Influence of LED-Illumination to the regeneration potential of somatic embryos of vitis vinifera 'Chardonnay' - preliminary studies , 2015 .

[15]  A. Fehér Somatic embryogenesis - Stress-induced remodeling of plant cell fate. , 2015, Biochimica et biophysica acta.

[16]  Jin-feng Zhang,et al.  iTRAQ-based comparative proteomic analysis of embryogenic and non-embryogenic tissues of Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr) , 2015, Plant Cell, Tissue and Organ Culture (PCTOC).

[17]  N. Noor,et al.  Epigenetic regulation and gene markers as signals of early somatic embryogenesis , 2015, Plant Cell, Tissue and Organ Culture (PCTOC).

[18]  Chao-jun Zhang,et al.  iTRAQ protein profile differential analysis between somatic globular and cotyledonary embryos reveals stress, hormone, and respiration involved in increasing plantlet regeneration of Gossypium hirsutum L. , 2015, Journal of proteome research.

[19]  T. Ueda,et al.  Plant vacuolar trafficking driven by RAB and SNARE proteins. , 2014, Current opinion in plant biology.

[20]  D. Steinmacher,et al.  Improved high-efficiency protocol for somatic embryogenesis in Peach Palm (Bactris gasipaes Kunth) using RITA® temporary immersion system , 2014 .

[21]  C. Santa-Catarina,et al.  Comparative proteomic analysis of somatic embryo maturation in Carica papaya L. , 2014, Proteome Science.

[22]  P. Más,et al.  The impact of chromatin dynamics on plant light responses and circadian clock function. , 2014, Journal of experimental botany.

[23]  S. Dutta Gupta,et al.  Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis , 2013, Plant Biotechnology Reports.

[24]  Jianbo Wang,et al.  Proteomic analysis of embryo development in rice (Oryza sativa) , 2012, Planta.

[25]  J. Strommer The plant ADH gene family. , 2011, The Plant journal : for cell and molecular biology.

[26]  M. Flores-Tornero,et al.  Interactions between abscisic acid and plastidial glycolysis in Arabidopsis , 2011, Plant signaling & behavior.

[27]  Tokuko Haraguchi,et al.  Identification and Characterization of Nuclear Pore Complex Components in Arabidopsis thaliana[W][OA] , 2010, Plant Cell.

[28]  T. Thannhauser,et al.  Aluminum induced proteome changes in tomato cotyledons , 2009, Plant signaling & behavior.

[29]  T. Thannhauser,et al.  Proteome changes induced by aluminium stress in tomato roots. , 2009, Journal of experimental botany.

[30]  J. Tregear,et al.  Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeisguineensis: evidence for conserved gene functions in early development , 2009, Plant Molecular Biology.

[31]  S. Baud,et al.  Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. , 2007, The Plant journal : for cell and molecular biology.

[32]  J. P. Fabi,et al.  Papaya fruit ripening: response to ethylene and 1-methylcyclopropene (1-MCP). , 2007, Journal of agricultural and food chemistry.

[33]  J. Borst,et al.  The Arabidopsis thaliana AAA protein CDC48A interacts in vivo with the somatic embryogenesis receptor-like kinase 1 receptor at the plasma membrane. , 2006, Journal of structural biology.

[34]  Eugenia Russinova,et al.  The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 Protein Complex Includes BRASSINOSTEROID-INSENSITIVE1[W] , 2006, The Plant Cell Online.

[35]  F. Carrari,et al.  Reduced Expression of Aconitase Results in an Enhanced Rate of Photosynthesis and Marked Shifts in Carbon Partitioning in Illuminated Leaves of Wild Species Tomato1 , 2003, Plant Physiology.

[36]  S. S. Khuspe,et al.  In vitro and in vivo germination of papaya (Carica papaya L.) seeds , 2001 .

[37]  W. Martin,et al.  Chloroplast and cytosolic triosephosphate isomerases from spinach: purification, microsequencing and cDNA cloning of the chloroplast enzyme , 1994, Plant Molecular Biology.

[38]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .

[39]  The Fundamentals and Applications of Light-Emitting Diodes , 2020 .

[40]  Chentao Lin,et al.  New insights into the mechanisms of phytochrome-cryptochrome coaction. , 2018, The New phytologist.

[41]  T. S. Balbuena,et al.  Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential. , 2016, Journal of proteomics.

[42]  S. Dhekney,et al.  Advances in papaya biotechnology , 2016 .

[43]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[44]  P. Cosette,et al.  Proteomic analysis. , 2014, Methods in molecular biology.

[45]  M. Hajduch,et al.  Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. , 2012, Journal of proteome research.