Color constancy : surface color from changing illumination

Viewing the lights reflected by a set of three or more surfaces, a trichromatic visual system can recover three color-constant descriptors of reflectance per surface if the color of the surfaces’ illuminant changes. This holds true for a broad range of models that relate photoreceptor, surface, and illuminant spectral properties. Changing illumination, which creates the problem of color constancy, affords its solution.

[1]  TWO-WEEK Loan COpy,et al.  University of California , 1886, The American journal of dental science.

[2]  D. Jameson,et al.  Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. , 1955, Journal of the Optical Society of America.

[3]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[4]  J. Cohen Dependency of the spectral reflectance curves of the Munsell color chips , 1964 .

[5]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[6]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[7]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[8]  D. L. Macadam,et al.  The measurement of appearance , 1975 .

[9]  E. R. Dixon Spectral distribution of Australian daylight , 1978 .

[10]  M. H. Brill,et al.  A device performing illuminant-invariant assessment of chromatic relations. , 1978, Journal of theoretical biology.

[11]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[12]  E H Land,et al.  Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[13]  F. Billmeyer Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp. Price: $75.00 , 1983 .

[14]  E. Land Recent advances in retinex theory , 1986, Vision Research.

[15]  H C Lee,et al.  Method for computing the scene-illuminant chromaticity from specular highlights. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[16]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[17]  A Hurlbert,et al.  Formal connections between lightness algorithms. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[18]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[19]  Brian A. Wandell,et al.  The Synthesis and Analysis of Color Images , 1992, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance , 1987 .

[21]  P. Lennie,et al.  Mechanisms of color vision. , 1988, Critical reviews in neurobiology.

[22]  J. Parkkinen,et al.  Characteristic spectra of Munsell colors , 1989 .

[23]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[24]  B. Wandell,et al.  Standard surface-reflectance model and illuminant estimation , 1989 .

[25]  M. Landy,et al.  A Bilinear Model of the Illuminant's Effect on Color Appearance , 1991 .