Sensitive and Reversible Detection of Methanol and Water Vapor by In Situ Electrochemically Grown CuBTC MOFs on Interdigitated Electrodes.

The in situ electrochemical growth of Cu benzene-1,3,5-tricarboxylate (CuBTC) metal-organic frameworks, as an affinity layer, directly on custom-fabricated Cu interdigitated electrodes (IDEs) is described, acting as a transducer. Crystalline 5-7 µm thick CuBTC layers are grown on IDEs consisting of 100 electrodes with a width and a gap of both 50 µm and a height of 6-8 µm. These capacitive sensors are exposed to methanol and water vapor at 30 °C. The affinities show to be completely reversible with higher affinity toward water compared to methanol. For exposure to 1000 ppm methanol, a fast response is observed with a capacitance change of 5.57 pF at equilibrium. The capacitance increases in time followed diffusion-controlled kinetics (k = 2.9 mmol s-0.5 g-1CuBTC ). The observed capacitance change with methanol concentration follows a Langmuir adsorption isotherm, with a value for the equilibrium affinity Ke = 174.8 bar-1 . A volume fraction fMeOH = 0.038 is occupied upon exposure to 1000 ppm of methanol. The thin CuBTC affinity layer on the Cu-IDEs shows fast, reversible, and sensitive responses to methanol and water vapor, enabling quantitative detection in the range of 100-8000 ppm.

[1]  Freek Kapteijn,et al.  Polymer–Metal Organic Framework Composite Films as Affinity Layer for Capacitive Sensor Devices , 2016 .

[2]  M. LeVan,et al.  Diffusion of CO2 in Large Crystals of Cu-BTC MOF. , 2016, Journal of the American Chemical Society.

[3]  M. Tu,et al.  Metal–organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives , 2016 .

[4]  Hai-Long Jiang,et al.  Chemical Sensors Based on Metal-Organic Frameworks. , 2016, ChemPlusChem.

[5]  Mohammad Hossein Sheikhi,et al.  Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors , 2016 .

[6]  E. Sudhölter,et al.  Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis , 2016 .

[7]  D. D. De Vos,et al.  Towards metal–organic framework based field effect chemical sensors: UiO-66-NH2 for nerve agent detection , 2016, Chemical science.

[8]  J. Fransaer,et al.  On the electrochemical deposition of metal–organic frameworks , 2016 .

[9]  Hans Van Gorp,et al.  Chemical vapour deposition of zeolitic imidazolate framework thin films. , 2016, Nature materials.

[10]  Hongxia Xi,et al.  Adsorptive Separation of Methanol-Acetone on Isostructural Series of Metal-Organic Frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Computational Study of Adsorption Mechanisms and Metal-Substitution Impacts. , 2015, ACS applied materials & interfaces.

[11]  C. Wöll,et al.  Surface-mounted metal-organic frameworks for applications in sensing and separation , 2015 .

[12]  Khaled N. Salama,et al.  Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study , 2015, Sensors.

[13]  Svetlana Mintova,et al.  Gas sensing using porous materials for automotive applications. , 2015, Chemical Society reviews.

[14]  Jan Fransaer,et al.  Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap , 2015 .

[15]  P. Gómez-Álvarez,et al.  Insights into the adsorption of water and small alcohols on the open-metal sites of Cu-BTC via molecular simulation , 2015 .

[16]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[17]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[18]  R. Pohle,et al.  Analyte detection with Cu-BTC metal-organic framework thin films by means of mass-sensitive and work-function-based readout. , 2014, Analytical chemistry.

[19]  Jared B. DeCoste,et al.  Metal-organic frameworks for air purification of toxic chemicals. , 2014, Chemical reviews.

[20]  Majid Beidaghi,et al.  Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors , 2014 .

[21]  M. Everaert,et al.  Mechanical properties of electrochemically synthesised metal–organic framework thin films , 2013 .

[22]  Francisco Molina-Lopez,et al.  Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability , 2013 .

[23]  Zhengbang Wang,et al.  On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films , 2013 .

[24]  G. Baron,et al.  High Adsorption Capacities and Two-Step Adsorption of Polar Adsorbates on Copper–Benzene-1,3,5-tricarboxylate Metal–Organic Framework , 2013 .

[25]  Herman Terryn,et al.  Electrochemical synthesis of thin HKUST-1 layers on copper mesh , 2012 .

[26]  F. Kapteijn,et al.  Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks , 2012 .

[27]  C. Wöll,et al.  Epitaxially grown metal-organic frameworks , 2012 .

[28]  Zhen Jin,et al.  Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review , 2012, Sensors.

[29]  O. Shekhah,et al.  High‐Throughput Fabrication of Uniform and Homogenous MOF Coatings , 2011 .

[30]  K. Misiakos,et al.  Chemocapacitance response simulation through polymer swelling and capacitor modeling , 2011 .

[31]  G. Seifert,et al.  Metal-organic frameworks as promising candidates for future ultralow-k dielectrics , 2010 .

[32]  Feng-Chin Wu,et al.  Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics , 2009 .

[33]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[34]  Gunter Hagen,et al.  Metal-Organic Frameworks for Sensing Applications in the Gas Phase , 2009, Sensors.

[35]  P. P. Sahay,et al.  Al-doped ZnO thin films as methanol sensors , 2008 .

[36]  Yang-Kyu Choi,et al.  Chemical sensors based on nanostructured materials , 2007 .

[37]  Rui Igreja,et al.  Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness , 2006 .

[38]  M. Meyyappan,et al.  Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors , 2004 .

[39]  R. Igreja,et al.  Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure , 2004 .

[40]  Qing Min Wang,et al.  Nanopore Structure and Sorption Properties of Cu-BTC Metal-Organic Framework , 2003 .

[41]  C. Hagleitner,et al.  Smart single-chip gas sensor microsystem , 2001, Nature.

[42]  V. Lakshminarayanan,et al.  A study of kinetics of adsorption of alkanethiols on gold using electrochemical impedance spectroscopy , 2000 .

[43]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[44]  P. Searson,et al.  Electrochemical deposition of metals onto silicon , 1998 .

[45]  Norman F. Sheppard,et al.  Electrical conductivity measurements using microfabricated interdigitated electrodes , 1993 .