Modeling Active Electrolocation in Weakly Electric Fish

In this paper, we provide a mathematical model for the electrolocation in weakly electric fishes. We first investigate the forward complex conductivity problem and derive the approximate boundary conditions on the skin of the fish. Then we provide a dipole approximation for small targets away from the fish. Based on this approximation, we obtain a non-iterative location search algorithm using multi-frequency measurements. We present numerical experiments to illustrate the performance and the stability of the proposed multi-frequency location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency measurements.

[1]  Walter Heiligenberg,et al.  Theoretical and experimental approaches to spatial aspects of electrolocation , 2004, Journal of comparative physiology.

[2]  Michael Vogelius,et al.  Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .

[3]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[4]  N. Hoshimiya,et al.  TheApteronotus EOD field: Waveform and EOD field simulation , 1980, Journal of comparative physiology.

[5]  G. Milton The Theory of Composites , 2002 .

[6]  Adriana Migliaro,et al.  Theoretical Analysis of Pre-Receptor Image Conditioning in Weakly Electric Fish , 2005, PLoS Comput. Biol..

[7]  Graeme W. Milton,et al.  Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics , 2003 .

[8]  Habib Ammari,et al.  High-Order Terms in the Asymptotic Expansions of the Steady-State Voltage Potentials in the Presence of Conductivity Inhomogeneities of Small Diameter , 2003, SIAM J. Math. Anal..

[9]  P. Moller Electric fishes : history and behavior , 1995 .

[10]  M. A. MacIver The Computational Neuroethology of Weakly Electric Fish: Body Modeling, Motion Analysis, and Sensory Signal Estimation , 2001 .

[11]  H. Ammari,et al.  Conductivity interface problems. Part I: Small perturbations of an interface , 2009 .

[12]  Christopher Assad,et al.  Electric field maps and boundary element simulations of electrolocation in weakly electric fish , 1997 .

[13]  von der Emde G Active electrolocation of objects in weakly electric fish , 1999, The Journal of experimental biology.

[14]  C. C. Bell,et al.  The electric organ of a mormyrid as a current and voltage source , 1976, Journal of comparative physiology.

[15]  B. Rasnow,et al.  Electric organ discharges of the gymnotiform fishes: III. Brachyhypopomus , 1999, Journal of Comparative Physiology A.

[16]  Habib Ammari,et al.  Identification of small inhomogeneities: Asymptotic factorization , 2007, Math. Comput..

[17]  Jin Keun Seo,et al.  The layer potential technique for the inverse conductivity problem , 1996 .

[18]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[19]  Gerhard von der Emde,et al.  Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish , 2007, Journal of Experimental Biology.

[20]  B. Rasnow,et al.  The electric organ discharges of the gymnotiform fishes: II. Eigenmannia , 1998, Journal of Comparative Physiology A.

[21]  Ursula van Rienen,et al.  Numerical methods in computational electrodynamics , 2000 .

[22]  Margaret Cheney,et al.  The Linear Sampling Method and the MUSIC Algorithm , 2001 .

[23]  M. A. MacIver,et al.  Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity. , 2001, The Journal of experimental biology.

[24]  André Longtin,et al.  Modeling the electric field of weakly electric fish , 2006, Journal of Experimental Biology.

[25]  Brian Rasnow,et al.  Hypercube Simulation of Electric Fish Potentials , 1990, Proceedings of the Fifth Distributed Memory Computing Conference, 1990..

[26]  Gerhard von der Emde,et al.  Distance and shape: perception of the 3-dimensional world by weakly electric fish , 2004, Journal of Physiology-Paris.

[27]  Mark E. Nelson,et al.  Modeling signal and background components of electrosensory scenes , 2005, Journal of Comparative Physiology A.

[28]  R. H. Hamstra,et al.  Coding properties of two classes of afferent nerve fibers: high-frequency electroreceptors in the electric fish, Eigenmannia. , 1973, Journal of neurophysiology.

[29]  Habib Ammari,et al.  Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory , 2010 .

[30]  Habib Zribi,et al.  La méthode des équations intégrales pour des analyses de sensitivité , 2005 .

[31]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[32]  Josselin Garnier,et al.  Imaging Schemes for Perfectly Conducting Cracks , 2011, SIAM J. Appl. Math..

[33]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[34]  Habib Ammari,et al.  A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements , 2008, Numerische Mathematik.

[35]  C. Bell,et al.  The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. , 1998, The Journal of experimental biology.

[36]  Luis Escauriaza,et al.  On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries , 1992 .

[37]  Tosio Kato Perturbation theory for linear operators , 1966 .

[38]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[39]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[40]  Brian Rasnow,et al.  Simulation and Measurement of the Electric Fields Generated by Weakly Electric Fish , 1988, NIPS.

[41]  M. Bacher,et al.  A new method for the simulation of electric fields, generated by electric fish, and their distorsions by objects , 1983, Biological Cybernetics.

[42]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[43]  Michael Vogelius,et al.  A direct impedance tomography algorithm for locating small inhomogeneities , 2003, Numerische Mathematik.

[44]  Habib Zribi,et al.  Asymptotic expansions for the voltage potentials with two‐dimensional and three‐dimensional thin interfaces , 2011 .

[45]  Elena Beretta,et al.  Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case , 2010, 1008.4046.

[46]  Ruben Budelli,et al.  Electric fish measure distance in the dark , 1998, Nature.

[47]  M. Lanza de Cristoforis,et al.  Real Analytic Dependence of Simple and Double Layer Potentials upon Perturbation of the Support and of the Density , 2004 .

[48]  K. E. Machin,et al.  The Mechanism of Object Location in Gymnarchus Niloticus and Similar Fish , 1958 .

[49]  O. D. Kellogg Foundations of potential theory , 1934 .

[50]  Bernhard Scholz,et al.  Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data , 2002, IEEE Transactions on Medical Imaging.

[51]  Grégoire Allaire,et al.  Numerical analysis and optimization , 2007 .

[52]  A. Caputi,et al.  The electric image in weakly electric fish: perception of objects of complex impedance. , 2000, The Journal of experimental biology.

[53]  Ekaterina Iakovleva,et al.  A MUSIC Algorithm for Locating Small Inclusions Buried in a Half-Space from the Scattering Amplitude at a Fixed Frequency , 2005, Multiscale Model. Simul..

[54]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[55]  J. Nédélec,et al.  Integral equations with non integrable kernels , 1982 .