The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene

Full geometry optimizations on oligoenes have been performed with Hartree–Fock and density functional theory in combination with double zeta and triple zeta quality basis sets with primary focus on the degree of bond length alternation and on the energy gap. Monitoring the dependence of the computed properties on the oligomer size provides new insights into the reliability of the calculations, which are analyzed in terms of dynamical and nondynamical electron correlation. Our theoretical bond length alternation values for the oligomers of polyacetylene extrapolate to significantly smaller values than what has been established by experiments and earlier theoretical predictions. The exact exchange mixing to the exchange-correlation functional not only improves the agreement of the theoretical gap of oligoenes with experimental excitation energies but also increases the computed bond length alternations. Based on a newly proposed one parameter functional of Becke, the effect of the exact exchange mixing has ...

[1]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[2]  J. Paldus,et al.  Bond length alternation in cyclic polyenes. VII. Valence bond theory approach , 1996 .

[3]  Krishnan Raghavachari,et al.  Electron Correlation Effects in Molecules , 1996 .

[4]  K. Yoshizawa,et al.  ELECTRON CORRELATION EFFECTS AND POSSIBLE D6H STRUCTURES IN LARGE CYCLIC POLYENES , 1996 .

[5]  J. Malrieu,et al.  Bond alternation of polyacetylene as a spin-Peierls distortion , 1996 .

[6]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[7]  Fry,et al.  Quasiparticle spectra of trans-polyacetylene. , 1996, Physical review. B, Condensed matter.

[8]  Axel D. Becke,et al.  Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing , 1996 .

[9]  Lévy,et al.  Excitation energies from density-functional orbital energies. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  Suhai Electron correlation and dimerization in trans-polyacetylene: Many-body perturbation theory versus density-functional methods. , 1995, Physical review. B, Condensed matter.

[11]  D. Chong,et al.  ONE-ELECTRON PROPERTIES OF SEVERAL SMALL MOLECULES CALCULATED USING THE LOCAL DENSITY APPROXIMATION WITHIN DENSITY FUNCTIONAL THEORY , 1995 .

[12]  J. Gähde,et al.  Conjugated Polymers and Related Materials , 1994 .

[13]  P. Pulay,et al.  Effect of nondynamical electron correlation on the geometries of conjugated .pi.-systems , 1993 .

[14]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[15]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[16]  S. Roth,et al.  Crystal structure of polyacetylene revisited: An x-ray study , 1992 .

[17]  T. Ziegler,et al.  Application of density functional theory to infrared absorption intensity calculations on main group molecules , 1992 .

[18]  Dennis S. Marynick,et al.  Modified extended Hückel band calculations on conjugated polymers , 1992 .

[19]  H. Lischka,et al.  From butadiene to polyacetylene: An ab initio study on the vibrational spectra of polyenes , 1992 .

[20]  Erich Wimmer,et al.  Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies , 1992 .

[21]  D. Baeriswyl,et al.  Conjugated conducting polymers , 1992 .

[22]  Richard R. Schrock,et al.  Conjugation length dependence of Raman scattering in a series of linear polyenes: Implications for polyacetylene , 1991 .

[23]  M. Karplus,et al.  Ab initio studies of polyenes. I. 1,3‐butadiene , 1991 .

[24]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[25]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[26]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[27]  W. Caminati,et al.  Microwave Fourier transform spectrum of s-trans-1,3-butadiene-1,1-d2 , 1988 .

[28]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[29]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[30]  White,et al.  Local-density-functional results for the dimerization of trans-polyacetylene: Relationship to the band-gap problem. , 1987, Physical review. B, Condensed matter.

[31]  G. Leising,et al.  Structural properties of trans- and cis-(CH)x , 1987 .

[32]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[33]  I. Levy,et al.  The crystal structure of trans,trans-1,3,5,7-octatetraene as a model for fully-ordered trans-polyacetylene , 1985 .

[34]  Schlüter,et al.  Density-functional theory of the band gap. , 1985, Physical review. B, Condensed matter.

[35]  C. S. Yannoni,et al.  Molecular Geometry of cis- and trans-Polyacetylene by Nutation NMR Spectroscopy , 1983 .

[36]  H. Eckhardt On the optical properties of trans‐polyacetylene , 1983 .

[37]  S. Suhai Bond alternation in infinite polyene: Peierls distortion reduced by electron correlation , 1983 .

[38]  A. Heeger,et al.  Structural determination of the symmetry-breaking parameter in trans-(CH)/sub x/ , 1982 .

[39]  M. Kertész,et al.  Electronic Structure of Polymers , 1982 .

[40]  S. Saito,et al.  Microwave spectra of deuterated ethylenes: Dipole moment and rz structure , 1981 .

[41]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[42]  J. Sjöblom,et al.  Conformational Analysis. The Structure and Torsional Potential of 1,3-Butadiene as Studied by Gas Electron Diffraction. , 1980 .

[43]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[44]  J. Duncan,et al.  Ground state rotational constants of H2CCD2 and C2D4 and geometry of ethylene , 1972 .

[45]  J. C. Slater Statistical Exchange-Correlation in the Self-Consistent Field , 1972 .

[46]  Yonezo Morino,et al.  Average structures of butadiene, acrolein, and glyoxal determined by gas electron diffraction and spectroscopy , 1968 .

[47]  C. Brändén,et al.  The Single and Double Bonds between sp2-Hybridized Carbon Atoms, as studied by the Gas Electron Diffraction Method. II. The Molecular Structure of 1,3,5-trans, trans, trans-Hexatriene. , 1968 .

[48]  Carl Djerassi,et al.  The Molecular Structure of 1,3-Butadiene and 1,3,5-trans-Hexatriene. , 1966 .

[49]  H. C. Longuet-Higgins,et al.  The alternation of bond lengths in long conjugated chain molecules , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[51]  R. Gáspár,et al.  Über eine Approximation des Hartree-Fockschen Potentials Durch eine Universelle Potentialfunktion , 1954 .

[52]  John C. Slater,et al.  Quantum Theory of Molecules and Solids , 1951 .