A Block-Sparse Tensor Train Format for Sample-Efficient High-Dimensional Polynomial Regression
暂无分享,去创建一个
Reinhold Schneider | Philipp Trunschke | Michael Götte | R. Schneider | Philipp Trunschke | M. Götte
[1] Travis E. Oliphant,et al. Guide to NumPy , 2015 .
[2] Vladimir A. Kazeev,et al. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions , 2018, Numerische Mathematik.
[3] W. Hackbusch. On the Representation of Symmetric and Antisymmetric Tensors , 2016 .
[4] F. Verstraete,et al. Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.
[5] Mathilde Chevreuil,et al. A Least-Squares Method for Sparse Low Rank Approximation of Multivariate Functions , 2015, SIAM/ASA J. Uncertain. Quantification.
[6] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[7] Lars Grasedyck,et al. Stable ALS approximation in the TT-format for rank-adaptive tensor completion , 2019, Numerische Mathematik.
[8] Reinhold Schneider,et al. Convergence bounds for empirical nonlinear least-squares , 2021, ESAIM: Mathematical Modelling and Numerical Analysis.
[9] Hans Zwart,et al. An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.
[10] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[11] K. Kunisch,et al. Taylor expansions of the value function associated with a bilinear optimal control problem , 2017, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.
[12] Guifre Vidal,et al. Tensor network decompositions in the presence of a global symmetry , 2009, 0907.2994.
[13] Stefan Klus,et al. Multidimensional Approximation of Nonlinear Dynamical Systems , 2018, Journal of Computational and Nonlinear Dynamics.
[14] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[15] Daniel Kressner,et al. Low-Rank Tensor Approximation for Chebyshev Interpolation in Parametric Option Pricing , 2019, SIAM J. Financial Math..
[16] Reinhold Schneider,et al. Variational Monte Carlo—bridging concepts of machine learning and high-dimensional partial differential equations , 2018, Advances in Computational Mathematics.
[17] Michael Steinlechner,et al. Riemannian Optimization for High-Dimensional Tensor Completion , 2016, SIAM J. Sci. Comput..
[18] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[19] Stefan Klus,et al. Tensor-based algorithms for image classification , 2019, Algorithms.
[20] Alexander Sebastian Johannes Wolf Wolf. Low rank tensor decompositions for high dimensional data approximation, recovery and prediction , 2019 .
[21] Reinhold Schneider,et al. Non-intrusive Tensor Reconstruction for High-Dimensional Random PDEs , 2019, Comput. Methods Appl. Math..
[22] Reinhold Schneider,et al. Adaptive stochastic Galerkin FEM with hierarchical tensor representations , 2015, Numerische Mathematik.
[23] Christopher K. I. Williams,et al. Modelling Frontal Discontinuities in Wind Fields , 2002 .
[24] Markus Bachmayr,et al. Stability of Low-Rank Tensor Representations and Structured Multilevel Preconditioning for Elliptic PDEs , 2018, Foundations of Computational Mathematics.
[25] R. Schneider,et al. Approximating the Stationary Hamilton-Jacobi-Bellman Equation by Hierarchical Tensor Products , 2019 .
[26] Markus Bachmayr,et al. Particle Number Conservation and Block Structures in Matrix Product States , 2021, ArXiv.
[27] Reinhold Schneider,et al. Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..
[28] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[29] S. Brunton,et al. Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.
[30] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[31] Lars Grasedyck,et al. Tree Adaptive Approximation in the Hierarchical Tensor Format , 2014, SIAM J. Sci. Comput..
[32] A. Cohen,et al. Optimal weighted least-squares methods , 2016, 1608.00512.
[33] David J. Schwab,et al. Supervised Learning with Tensor Networks , 2016, NIPS.
[34] Ivan V. Oseledets,et al. Time Integration of Tensor Trains , 2014, SIAM J. Numer. Anal..
[35] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[36] Martin Eigel,et al. Pricing high-dimensional Bermudan options with hierarchical tensor formats , 2021, ArXiv.
[37] Ivan V. Oseledets,et al. DMRG Approach to Fast Linear Algebra in the TT-Format , 2011, Comput. Methods Appl. Math..
[38] Karl Kunisch,et al. Tensor Decomposition Methods for High-dimensional Hamilton-Jacobi-Bellman Equations , 2021, SIAM J. Sci. Comput..
[39] Alex Goessmann. Tensor network approaches for data-driven identification of non-linear dynamical laws , 2020 .
[40] Xiu Yang,et al. Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[41] Ulrich Eggers,et al. Introduction To Infinite Dimensional Linear Systems Theory , 2016 .
[42] Lorenz Richter,et al. Solving high-dimensional parabolic PDEs using the tensor train format , 2021, ICML.
[43] Simone Göttlich,et al. Microscopic and Macroscopic Traffic Flow Models including Random Accidents , 2021, Communications in Mathematical Sciences.
[44] Christoph Schwab,et al. Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs , 2013 .