An overview of MODIS capabilities for ocean science observations

The Moderate Resolution Imaging Spectroradiometer (MODIS) will add a significant new capability for investigating the 70% of the Earth's surface that is covered by oceans, in addition to contributing to the continuation of a decadal scale time series necessary for climate change assessment in the oceans. Sensor capabilities of particular importance for improving the accuracy of ocean products include high SNR and high stability for narrow or spectral bands, improved onboard radiometric calibration and stability monitoring, and improved science data product algorithms. Spectral bands for resolving solar-stimulated chlorophyll fluorescence and a split window in the 4-/spl mu/m region for SST will result in important new global ocean science products for biology and physics. MODIS will return full global data at 1-km resolution. The complete suite of Levels 2 and 3 ocean products is reviewed, and many areas where MODIS data are expected to make significant, new contributions to the enhanced understanding of the oceans' role in understanding climate change are discussed. In providing a highly complementary and consistent set of observations of terrestrial, atmospheric, and ocean observations, MODIS data will provide important new information on the interactions between Earth's major components.

[1]  H. Gordon,et al.  Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review , 1983 .

[2]  E. Paul McClain,et al.  Multiple Atmospheric-Window Techniques for Satellite-Derived Sea Surface Temperatures , 1981 .

[3]  A. Schwalb,et al.  Modified version of the Improved TIROS Operational Satellite (ITOS D-G) , 1972 .

[4]  John Marra,et al.  Estimation of photosynthetic rate from measurements of natural fluorescence : analysis of the effects of light and temperature , 1992 .

[5]  Wayne,et al.  SeaWiFS Algorithms , Part 1 , 2004 .

[6]  H. Gordon,et al.  Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm. , 1979, Applied optics.

[7]  W. Esaias,et al.  Ocean province classification using ocean colour data: observing biological signatures of variations in physical dynamics , 2000 .

[8]  William G. Pichel,et al.  Comparative performance of AVHRR‐based multichannel sea surface temperatures , 1985 .

[9]  Dj Lee,et al.  The Along=Track Scanning Radiometer - measurement of sea surface temperature from ERS-1 , 1990 .

[10]  Jorge L. Sarmiento,et al.  Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming , 1996, Science.

[11]  Daniel Kamykowski,et al.  A preliminary biophysical model of the relationship between temperature and plant nutrients in the upper ocean , 1987 .

[12]  Peter J. Minnett,et al.  Satellite multichannel infrared measurements of sea surface temperature of the N.E. Atlantic Ocean using AVHRR/2 , 1984 .

[13]  Dennis K. Clark,et al.  Atmospheric effects in the remote sensing of phytoplankton pigments , 1980 .

[14]  J. H. Morrow,et al.  Evidence for a simple relationship between natural fluorescence, photosynthesis and chlorophyll in the sea , 1990 .

[15]  James B. Brown,et al.  The Remote Sensing of Ocean Primary Productivity: Use of a New Data Compilation to Test Satellite Algorithms , 1992 .

[16]  C. Prabhakara,et al.  Estimation of sea surface temperature from remote sensing in the 11‐ to 13‐μm window region , 1974 .

[17]  Dale A. Kiefer,et al.  Natural fluorescence of chlorophyll a: Relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre , 1989 .

[18]  Warren L. Butler,et al.  Energy Distribution in the Photochemical Apparatus of Photosynthesis , 1978 .

[19]  Stanford B. Hooker,et al.  Seawifs Technical Report Series. Volume 2: Analysis of Orbit Selection for Seawifs: Ascending Versus Descending Node , 1992 .

[20]  H. Gordon,et al.  Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. , 1994, Applied optics.

[21]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[22]  William G. Pichel,et al.  Multi-channel improvements to satellite-derived global sea surface temperatures , 1983 .

[23]  R. Evans,et al.  Coastal zone color scanner “system calibration”: A retrospective examination , 1994 .

[24]  H. Gordon,et al.  Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption. , 1997, Applied optics.

[25]  Ricardo M Letelier,et al.  Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean , 1997 .

[26]  K. Carder,et al.  A simple spectral solar irradiance model for cloudless maritime atmospheres , 1990 .

[27]  R. A. Vaughan,et al.  Microwave remote sensing for oceanographic and marine weather forecast models , 1990 .

[28]  Susan Walsh,et al.  Ocean color: Availability of the global data set , 1989 .

[29]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[30]  Ricardo M Letelier,et al.  Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–92 El Niño , 1995, Nature.

[31]  H. Gordon,et al.  Phytoplankton Pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with Surface Measurements , 1980, Science.

[32]  Henry E. Fuelberg,et al.  An evaluation of high-resolution interferometer soundings and their use in mesoscale analyses , 1993 .

[33]  H. Gordon Atmospheric correction of ocean color imagery in the Earth Observing System era , 1997 .

[34]  R. A. Neville,et al.  Passive remote sensing of phytoplankton via chlorophyll α fluorescence , 1977 .

[35]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[36]  Dale A. Kiefer,et al.  In-vivo absorption properties of algal pigments , 1990, Defense, Security, and Sensing.

[37]  Frank E. Hoge,et al.  An analysis of model and radiance measurement errors , 1996 .

[38]  J. Aiken,et al.  The SeaWiFS CZCS-type pigment algorithm , 1996 .

[39]  Robert A. Barnes,et al.  SeaWiFS prelaunch radiometric calibration and spectral characterization , 1995 .

[40]  Ian S. Robinson,et al.  Review Article. The sea surface thermal boundary layer and its relevance to the measurement of sea surface temperature by airborne and spaceborne radiometers , 1984 .

[41]  P. Abel,et al.  MODIS Calibration: A Brief Review of the Strategy for the At-Launch Calibration Approach , 1996 .

[42]  Claire L. Parkinson,et al.  Atlas of satellite observations related to global change , 1993 .

[43]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[44]  Robert A. Barnes,et al.  SeaWiFS Technical Report Series. Volume 22: Prelaunch Acceptance Report for the SeaWiFS Radiometer , 1994 .

[45]  I. J. Barton,et al.  Sea surface temperature measurements by the along-track scanning radiometer on the ERS 1 satellite: Early results , 1994 .

[46]  D. Clark Phytoplankton Pigment Algorithms for the Nimbus-7 CZCS , 1981 .

[47]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[48]  C. Walton,et al.  Nonlinear Multichannel Algorithms for Estimating Sea Surface Temperature with AVHRR Satellite Data , 1988 .

[49]  R. Kauth,et al.  Estimation of Sea Surface Temperature from Space , 1970 .

[50]  Edward J. Carpenter,et al.  Trichodesmium, a Globally Significant Marine Cyanobacterium , 1997 .

[51]  Frank E. Hoge,et al.  Photosynthetic accessory pigments - Evidence for the influence of phycoerythrin on the submarine light field , 1990 .

[52]  M. S. Finch,et al.  A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .

[53]  C. Brown,et al.  Coccolithophorid blooms in the global ocean , 1994 .

[54]  Wayne E. Esaias Remote sensing of oceanic phytoplankton - Present capabilities and future goals , 1980 .

[55]  R. Swift,et al.  Active-passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions. , 1986, Applied optics.

[56]  C. Prabhakara,et al.  A search for global and seasonal variation of methane from Nimbus 4 Iris measurements , 1974 .

[57]  Michael P. Weinreb,et al.  Real-world calibration of GOES-8 and -9 sensors , 1996, Optics & Photonics.

[58]  Alastair H. F. Robertson,et al.  Probing continental collision in the Mediterranean Sea , 1994 .

[59]  Robert H. Woodward,et al.  Improvements in coverage frequency of ocean color: combining data from SeaWiFS and MODIS , 1998, IEEE Trans. Geosci. Remote. Sens..

[60]  J. Goering,et al.  UPTAKE OF NEW AND REGENERATED FORMS OF NITROGEN IN PRIMARY PRODUCTIVITY1 , 1967 .

[61]  William J. Emery,et al.  On the bulk‐skin temperature difference and its impact on satellite remote sensing of sea surface temperature , 1990 .

[62]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[63]  Patrick M. Holligan,et al.  The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration , 1996 .

[64]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[65]  James W. Brown,et al.  A semianalytic radiance model of ocean color , 1988 .

[66]  J. W. Brown,et al.  Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. , 1983, Applied optics.

[67]  L. Prieur,et al.  Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1 , 1981 .

[68]  R. Swift,et al.  Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments. , 1981, Applied optics.

[69]  A. Schwalb,et al.  The TIROS-N/NOAA A-G satellite series , 1978 .

[70]  Janet W. Campbell,et al.  Level-3 Sea WiFS data products: spatial and temporal binning algorithms , 1996 .

[71]  Robert Frouin,et al.  Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications , 1996 .

[72]  R. Saunders,et al.  The Validation of ATSR Using Aircraft Radiometer Data over the Tropical Atlantic , 1994 .

[73]  P. J. Minnett,et al.  Satellite Infrared Scanning Radiometers — AVHRR and ATSR/M , 1990 .

[74]  A. M. Zavody,et al.  A radiative transfer model for sea surface temperature retrieval for the along‐track scanning radiometer , 1995 .

[75]  W. Esaias,et al.  Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: A satellite view , 1993 .

[76]  K. Voss,et al.  Validation of atmospheric correction over the oceans , 1997 .

[77]  Stanford,et al.  Ocean Optics Protocols for SeaWiFS Validation , 2022 .

[78]  J. Gower,et al.  Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer , 1990 .

[79]  Roger Saunders,et al.  Theoretical algorithms for satellite‐derived sea surface temperatures , 1989 .

[80]  T. Phulpin,et al.  Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Μm , 1980 .

[81]  J. Fischer,et al.  Sun-stimulated chlorophyll fluorescence 1: Influence of oceanic properties , 1990 .

[82]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[83]  Peter Cornillon,et al.  The distribution of diurnal sea surface warming events in the western Sargasso Sea , 1985 .

[84]  T. Platt,et al.  An estimate of global primary production in the ocean from satellite radiometer data , 1995 .

[85]  Ricardo M Letelier,et al.  An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS) , 1996 .

[86]  K. A. Kilpatrick,et al.  The 1991 coccolithophore bloom in the central North Atlantic. 1. Optical properties and factors affecting their distribution , 1996 .

[87]  H. Gordon,et al.  Removal of atmospheric effects from satellite imagery of the oceans. , 1978, Applied optics.

[88]  I. J. Barton,et al.  The along track scanning radiometer — an analysis of coincident ship and satellite measurements , 1993 .

[89]  F. X. Kneizys,et al.  Atmospheric transmittance/radiance: Computer code LOWTRAN 5 , 1978 .

[90]  H. Gordon,et al.  Clear water radiances for atmospheric correction of coastal zone color scanner imagery. , 1981, Applied optics.

[91]  J. W. Brown,et al.  Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner. , 1988, Applied optics.

[92]  C. Davis,et al.  Model for the interpretation of hyperspectral remote-sensing reflectance. , 1994, Applied optics.