Challenges and Perspectives for NASICON‐Type Electrode Materials for Advanced Sodium‐Ion Batteries

Sodium‐ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast capacity decay, low rate capacities and low Coulombic efficiencies. A special case is sodium super ion conductor (NASICON)‐based electrode materials as they exhibit – besides pronounced structural stability – exceptionally high ion conductivity, rendering them most promising for sodium storage. Owing to the limiting, comparatively low electronic conductivity, nano‐structuring is a prerequisite for achieving satisfactory rate‐capability. In this review, we analyze advantages and disadvantages of NASICON‐type electrode materials and highlight electrode structure design principles for obtaining the desired electrochemical performance. Moreover, we give an overview of recent approaches to enhance electrical conductivity and structural stability of cathode and anode materials based on NASICON structure. We believe that this review provides a pertinent insight into relevant design principles and inspires further research in this respect.

[1]  F. Du,et al.  Core/Double-Shell Structured Na3V2(PO4)2F3@C Nanocomposite as the High Power and Long Lifespan Cathode for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[2]  J. Goodenough,et al.  An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na3 MnTi(PO4 )3. , 2016, Angewandte Chemie.

[3]  Bing Sun,et al.  Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries , 2016 .

[4]  Xinping Ai,et al.  3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High‐Rate and Ultracycle‐Stable Anode Material for Sodium Ion Batteries , 2016 .

[5]  P. Chu,et al.  Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi 2 (PO 4 ) 3 nanocrystals for high-performance sodium electrodes , 2016 .

[6]  Li Liu,et al.  Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries , 2016 .

[7]  Li Lu,et al.  A Na+ Superionic Conductor for Room-Temperature Sodium Batteries , 2016, Scientific Reports.

[8]  Kai Cui,et al.  Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries , 2016 .

[9]  Hyun-Wook Lee,et al.  Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries , 2016 .

[10]  Mao-wen Xu,et al.  Reduced graphene oxide and Fe2(MoO4)3 composite for sodium-ion batteries cathode with improved performance , 2016 .

[11]  Chang Ming Li,et al.  Pyro-synthesis of a nanostructured NaTi2(PO4)3/C with a novel lower voltage plateau for rechargeable sodium-ion batteries. , 2016, Journal of colloid and interface science.

[12]  Haoshen Zhou,et al.  Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance , 2016 .

[13]  Sen Zhang,et al.  First exploration of ultrafine Na7V3(P2O7)4 as a high-potential cathode material for sodium-ion battery , 2016 .

[14]  Chaojiang Niu,et al.  Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries , 2016 .

[15]  Hui Li,et al.  Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[16]  B. Melot,et al.  Influence of Rotational Distortions on Li+- and Na+-Intercalation in Anti-NASICON Fe2(MoO4)3 , 2016 .

[17]  Liqiang Mai,et al.  Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries , 2016 .

[18]  Hongyang Zhao,et al.  Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage , 2016 .

[19]  Chang Ming Li,et al.  Detailed investigation of a NaTi2(PO4)3 anode prepared by pyro-synthesis for Na-ion batteries , 2016 .

[20]  Jiguo Geng First Principle Study of Na3V2(PO4)2F3 for Na Batteries Application and Experimental Investigation , 2016, International Journal of Electrochemical Science.

[21]  Hyun Kyung Kim,et al.  In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries , 2016, Nano Research.

[22]  Tianyou Zhai,et al.  A High Rate 1.2V Aqueous Sodium-ion Battery Based on All NASICON Structured NaTi2(PO4)3 and Na3V2(PO4)3 , 2016 .

[23]  P. Jelínek,et al.  Structural and Electronic Properties of Nitrogen-Doped Graphene. , 2016, Physical review letters.

[24]  H. Althues,et al.  Hard Carbon Anodes and Novel Electrolytes for Long‐Cycle‐Life Room Temperature Sodium‐Sulfur Full Cell Batteries , 2016 .

[25]  Yan Yu,et al.  High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network , 2016, Advanced materials.

[26]  Haihui Wang,et al.  Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries , 2016 .

[27]  J. Tarascon,et al.  Insertion compounds and composites made by ball milling for advanced sodium-ion batteries , 2016, Nature Communications.

[28]  Doron Aurbach,et al.  Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. , 2016, ACS applied materials & interfaces.

[29]  Yunhui Huang,et al.  NASICON-Structured NaTi2(PO4)3@C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[30]  Chao Lai,et al.  A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode , 2015 .

[31]  Xing-long Wu,et al.  A Superior Na3 V2 (PO4 )3 -Based Nanocomposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries. , 2015, Chemistry.

[32]  Clement Bommier,et al.  Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries , 2015, ACS central science.

[33]  S. Okada,et al.  Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron-Na vacancy complex diffusion. , 2015, Physical chemistry chemical physics : PCCP.

[34]  Chao Wu,et al.  An Advanced Sodium‐Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network , 2015, Advanced materials.

[35]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[36]  Nan Chen,et al.  Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life , 2015 .

[37]  D. Su,et al.  Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance , 2015 .

[38]  P. Ajayan,et al.  Atomic cobalt on nitrogen-doped graphene for hydrogen generation , 2015, Nature Communications.

[39]  Yuliang Cao,et al.  Na 3 V 2 (PO 4 ) 3 /C nanocomposite synthesized via pre-reduction process as high-performance cathode material for sodium-ion batteries , 2015 .

[40]  Feng Wu,et al.  Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries , 2015 .

[41]  Tianshi Wang,et al.  NASICON-Structured NaSn2(PO4)(3) with Excellent High-Rate Properties as Anode Material for Lithium Ion Batteries , 2015 .

[42]  F. Ducastelle,et al.  Charge transfer and electronic doping in nitrogen-doped graphene , 2015, Scientific Reports.

[43]  Bing Sun,et al.  3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries. , 2015, ChemSusChem.

[44]  Junmei Zhao,et al.  Superior Na-Storage Performance of Low-Temperature-Synthesized Na3(VO(1-x)PO4)2F(1+2x) (0≤x≤1) Nanoparticles for Na-Ion Batteries. , 2015, Angewandte Chemie.

[45]  D. Su,et al.  Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. , 2015, Chemical communications.

[46]  Qunjie Xu,et al.  Improved electrochemical performance of Na3V2(PO4)3 cathode by B-doping of carbon coating layer for sodium-ion batteries , 2015 .

[47]  L. Shaw,et al.  Advances and challenges of sodium ion batteries as post lithium ion batteries , 2015 .

[48]  Chao Wu,et al.  Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes. , 2015, ACS nano.

[49]  Qian Zhang,et al.  An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries. , 2015, ChemSusChem.

[50]  Chen Minghua,et al.  Fabrication of multi-walled carbon nanotubes modified Na3V2(PO4)3/C and its application to high-rate lithium-ion batteries cathode , 2015 .

[51]  J. Hassoun,et al.  A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode , 2015 .

[52]  Masayoshi Ishida,et al.  A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. , 2015, Angewandte Chemie.

[53]  B. Sung,et al.  High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties , 2015, Scientific Reports.

[54]  Lin Gu,et al.  Nanoconfined Carbon‐Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium‐Ion Batteries , 2015 .

[55]  Yutao Li,et al.  A 3D porous interconnected NaVPO4F/C network: preparation and performance for Na-ion batteries , 2015 .

[56]  Yunhui Huang,et al.  Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling , 2015, Nature Communications.

[57]  X. Zhou,et al.  Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries. , 2015, Dalton transactions.

[58]  Yong‐Sheng Hu,et al.  A phase-transfer assisted solvo-thermal strategy for low-temperature synthesis of Na3(VO1-xPO4)2F1+2x cathodes for sodium-ion batteries. , 2015, Chemical communications.

[59]  F. Fauth,et al.  Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction , 2015 .

[60]  Atsuo Yamada,et al.  Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors , 2015, Nature Communications.

[61]  Katja Kretschmer,et al.  Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries , 2015 .

[62]  Zelang Jian,et al.  A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries. , 2015, Chemical communications.

[63]  Di Li,et al.  Synthesis of Fe2(MoO4)3 microspheres by self-assembly and photocatalytic performances , 2015 .

[64]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[65]  Guoxiu Wang,et al.  MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium‐Ion Batteries: The Role of the Two‐Dimensional Heterointerface , 2015 .

[66]  M. Ling,et al.  Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries , 2015 .

[67]  Guoxiu Wang,et al.  A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. , 2015, Nanoscale.

[68]  Y. Liu,et al.  Fe2(MoO4)3 nanoparticle-anchored MoO3 nanowires: strong coupling via the reverse diffusion of heteroatoms and largely enhanced lithium storage properties , 2015 .

[69]  Xiaobo Ji,et al.  Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries. , 2015, Physical chemistry chemical physics : PCCP.

[70]  Wen Chen,et al.  Fe2(MoO4)3/Nanosilver Composite as a Cathode for Sodium-Ion Batteries , 2014 .

[71]  Hongsen Li,et al.  Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries , 2014 .

[72]  Xiaobo Ji,et al.  High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion , 2014 .

[73]  Kazue Takahashi,et al.  Characterization of Electrochemical Cycling-Induced New Products of NaCuO2 Cathode Material for Sodium Secondary Batteries , 2014 .

[74]  G. Jenkins,et al.  Graphene field-effect transistor and its application for electronic sensing. , 2014, Small.

[75]  Zhuo. Sun,et al.  Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries. , 2014, Dalton transactions.

[76]  J. Kikkawa,et al.  Assembly of Na3V2(PO4)3 nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties. , 2014, Chemistry.

[77]  A. Heller,et al.  Tin-germanium alloys as anode materials for sodium-ion batteries. , 2014, ACS applied materials & interfaces.

[78]  Xiaobo Ji,et al.  A study into the extracted ion number for NASICON structured Na₃V₂(PO₄)₃ in sodium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[79]  Yang‐Kook Sun,et al.  Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[80]  Lin Gu,et al.  Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium‐Ion Batteries , 2014 .

[81]  Xiaobo Ji,et al.  Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries , 2014 .

[82]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[83]  S. Dou,et al.  SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. , 2014, Chemistry, an Asian journal.

[84]  S. Dou,et al.  Sn4+xP3 @ Amorphous Sn‐P Composites as Anodes for Sodium‐Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability , 2014, Advanced materials.

[85]  Xu Xu,et al.  Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High‐Performance Symmetric Sodium‐Ion Batteries , 2014, Advanced materials.

[86]  Ping Nie,et al.  Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. , 2014, Nanoscale.

[87]  Jun Chen,et al.  Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries , 2014 .

[88]  Yan Yu,et al.  Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. , 2014, Nanoscale.

[89]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[90]  Matthew T. Dunstan,et al.  Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3 , 2014 .

[91]  Wei Wang,et al.  Controllable construction of 3D-skeleton-carbon coated Na3V2(PO4)3 for high-performance sodium ion battery cathode , 2014 .

[92]  A. Balducci,et al.  Determination of sodium ion diffusion coefficients in sodium vanadium phosphate , 2014, Journal of Solid State Electrochemistry.

[93]  Yan Yu,et al.  Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. , 2014, Nano letters.

[94]  K. Xia,et al.  Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure , 2014, Beilstein journal of nanotechnology.

[95]  Xiaobo Ji,et al.  First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 , 2014 .

[96]  Wei Li,et al.  Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. , 2014, Nanoscale.

[97]  H. Kitabayashi,et al.  Electrochemical Properties of NaCuO2 for Sodium-Ion Secondary Batteries , 2014 .

[98]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[99]  Craig E. Banks,et al.  Multifunctional dual Na3V2(PO4)2F3 cathode for both lithium-ion and sodium-ion batteries , 2014 .

[100]  A. Yamada,et al.  Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical Properties , 2014 .

[101]  Marc D. Walter,et al.  Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. , 2014, Nano letters.

[102]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[103]  Laure Monconduit,et al.  NiP3: a promising negative electrode for Li- and Na-ion batteries , 2014 .

[104]  Yan Yu,et al.  Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. , 2014, Nanoscale.

[105]  Aravindaraj G. Kannan,et al.  Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes , 2013 .

[106]  Petr V Prikhodchenko,et al.  High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries , 2013, Nature Communications.

[107]  Guoxiu Wang,et al.  Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. , 2013, ACS nano.

[108]  Micheál D. Scanlon,et al.  MoS2 Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution , 2013 .

[109]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[110]  K. Müllen,et al.  Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. , 2013, Journal of the American Chemical Society.

[111]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[112]  J. Goodenough,et al.  Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. , 2013, ACS applied materials & interfaces.

[113]  Feng Li,et al.  Carbon–sulfur composites for Li–S batteries: status and prospects , 2013 .

[114]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[115]  Xiaogang Han,et al.  Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. , 2013, ACS nano.

[116]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[117]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[118]  P. Balaya,et al.  α-MoO3: A high performance anode material for sodium-ion batteries , 2013 .

[119]  Joachim Maier,et al.  Thermodynamics of electrochemical lithium storage. , 2013, Angewandte Chemie.

[120]  S. Okada,et al.  Cathode properties of Na3M2(PO4) 2F3 [M = Ti, Fe, V] for sodium-ion batteries , 2013 .

[121]  Guoxiu Wang,et al.  SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries , 2013 .

[122]  J. Tarascon,et al.  Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. , 2013, Journal of the American Chemical Society.

[123]  T. Nam,et al.  Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization , 2013 .

[124]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[125]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[126]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[127]  R. Ruoff,et al.  Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. , 2013, ACS nano.

[128]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[129]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[130]  H. Ahn,et al.  Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries , 2012 .

[131]  Guoxiu Wang,et al.  Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries , 2012 .

[132]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[133]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[134]  Qian Sun,et al.  NASICON-type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery , 2012 .

[135]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[136]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[137]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[138]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[139]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[140]  P. Heitjans,et al.  From composites to solid solutions: modeling of ionic conductivity in the CaF2-BaF2 system. , 2012, Chemistry.

[141]  L. Nazar,et al.  Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[142]  T. Maiyalagan,et al.  Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications , 2012 .

[143]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[144]  Qian Sun,et al.  High capacity Sb2O4 thin film electrodes for rechargeable sodium battery , 2011 .

[145]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[146]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[147]  A. G. Kurenya,et al.  Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries , 2011 .

[148]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[149]  Dominik Samuelis,et al.  Sustained Lithium‐Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena , 2011 .

[150]  C. Masquelier Solid electrolytes: Lithium ions on the fast track. , 2011, Nature materials.

[151]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[152]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[153]  Jun Liu,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[154]  C. Masquelier,et al.  α-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases. , 2011, Journal of the American Chemical Society.

[155]  Feng Li,et al.  Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. , 2011, ACS nano.

[156]  X. Rui,et al.  Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material , 2011 .

[157]  M. Vithal,et al.  A wide-ranging review on Nasicon type materials , 2011 .

[158]  Lipeng Chen,et al.  Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries , 2011 .

[159]  Yong Wang,et al.  Nitrogen-doped graphene and its electrochemical applications , 2010 .

[160]  P. Pfeifer,et al.  A review of boron enhanced nanoporous carbons for hydrogen adsorption: numerical perspective , 2010 .

[161]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[162]  D. Zhao,et al.  An Aqueous Emulsion Route to Synthesize Mesoporous Carbon Vesicles and Their Nanocomposites , 2010, Advanced materials.

[163]  M. R. Palacín Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[164]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[165]  T. Sheela,et al.  Conversion reactions: a new pathway to realise energy in lithium-ion battery—review , 2009 .

[166]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[167]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[168]  M. Armand,et al.  Building better batteries , 2008, Nature.

[169]  Jean-Marie Tarascon,et al.  Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5 , 2006 .

[170]  Arumugam Manthiram,et al.  Chemical and structural instabilities of lithium ion battery cathodes , 2006 .

[171]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[172]  C. Masquelier,et al.  Structural and Electrochemical Studies of Rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM(PO4)3 (M: Fe, Cr) Phosphates , 2003 .

[173]  Gerbrand Ceder,et al.  Experimental and Computational Study of the Structure and Electrochemical Properties of LixM2(PO4)3 Compounds with the Monoclinic and Rhombohedral Structure , 2002 .

[174]  Pier Paolo Prosini,et al.  Determination of the chemical diffusion coefficient of lithium in LiFePO4 , 2002 .

[175]  J. Isasi,et al.  Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure , 2000 .

[176]  J. Maier Point-defect thermodynamics and size effects , 2000 .

[177]  L. Nazar,et al.  A Powder Neutron Diffraction Investigation of the Two Rhombohedral NASICON Analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3 , 2000 .

[178]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[179]  M. Verbrugge,et al.  Modeling Lithium Intercalation of Single‐Fiber Carbon Microelectrodes , 1996 .

[180]  J. Maier Mass Transport in the Presence of Internal Defect Reactions—Concept of Conservative Ensembles: I, Chemical Diffusion in Pure Compounds , 1993 .

[181]  Bruno Scrosati,et al.  Lithium Rocking Chair Batteries: An Old Concept? , 1992 .

[182]  W. Paulus,et al.  Crystal growth and structure refinement of NaCuO2 by X-ray and neutron diffraction , 1990 .

[183]  J. Maier,et al.  SODIUM ION CONDUCTORS WITH NASICON FRAMEWORK STRUCTURE , 1989 .

[184]  P. Colomban Orientational disorder, glass/crystal transition and superionic conductivity in nasicon , 1986 .

[185]  J. Maier,et al.  Thermodynamic investigations of Na2ZrO3 by electrochemical means , 1986 .

[186]  H. Schulz,et al.  NASICON solid electrolytes part I: The Na+-diffusion path and its relation to the structure , 1985 .

[187]  A. Clearfield NASICON II Mixed phosphates , 1983 .

[188]  J. Boilot,et al.  Zirconium deficiency in nasicon-type compounds: Crystal structure of Na5Zr(PO4)3 , 1983 .

[189]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[190]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[191]  Fumihiro Sagane Synthesis of NaTi2(PO4)3 Thin-Film Electrodes by Sol-Gel Method and Study on the Kinetic Behavior of Na+-Ion Insertion/Extraction Reaction in Aqueous Solution , 2016 .

[192]  Qunjie Xu,et al.  Nitrogen‐Doping‐Induced Defects of a Carbon Coating Layer Facilitate Na‐Storage in Electrode Materials , 2015 .

[193]  Wen Chen,et al.  Synthesis and Electrochemical Performance of Fe2(MoO4)3/Carbon Nanotubes Nanocomposite Cathode Material for Sodium-Ion Battery , 2015 .

[194]  S. Passerini,et al.  Exploring the Low Voltage Behavior of V2O5 Aerogel as Intercalation Host for Sodium Ion Battery , 2015 .

[195]  Chunsheng Wang,et al.  An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. , 2015, Small.

[196]  Yitai Qian,et al.  Graphene-Supported NaTi2(PO4)3 as a High Rate Anode Material for Aqueous Sodium Ion Batteries , 2014 .

[197]  Bo Jiang,et al.  Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries , 2014 .

[198]  Baoquan Ding,et al.  Engineering the pH-responsive catalytic behavior of AuNPs by DNA. , 2014, Small.

[199]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[200]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[201]  Soo Yeon Lim,et al.  Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study , 2012 .

[202]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[203]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[204]  Palani Balaya,et al.  Anisotropy of Electronic and Ionic Transport in LiFePO4 Single Crystals , 2007 .

[205]  Ping Yu,et al.  Determination of the Lithium Ion Diffusion Coefficient in Graphite , 1999 .

[206]  M. R. Palacín New British Standards , 1979 .