Spectroscopic characterisation of microlensing events - Towards a new interpretation of OGLE-2011-BLG-0417

The microlensing event OGLE-2011-BLG-0417 is an exceptionally bright lens binary that was predicted to present radial velocity variation at the level of several km s(-1). Pioneer radial velocity follow-up observations with the UVES spectrograph at the ESO-VLT of this system clearly ruled out the large radial velocity variation, leaving a discrepancy between the observation and the prediction. In this paper, we further characterise the microlensing system by analysing its spectral energy distribution (SED) derived using the UVES spectrum and new observations with the ARCoIRIS (CTIO) near-infrared spectrograph and the Keck adaptive optics instrument NIRC2 in the J, H, and Ks-bands. We determine the mass and distance of the stars independently from the microlensing modelling. We find that the SED is compatible with a giant star in the Galactic bulge and a foreground star with a mass of 0.94 +/- 0.09 M-circle dot at a distance of 1.07 +/- 0.24 kpc. We find that this foreground star is likely the lens. Its parameters are not compatible with the ones previously reported in the literature (0.52 +/- 0.04 M-circle dot at 0.95 +/- 0.06 kpc), based on the microlensing light curve. A thoughtful re-analysis of the microlensing event is mandatory to fully understand the reason of this new discrepancy. More importantly, this paper demonstrates that spectroscopic follow-up observations of microlensing events are possible and provide independent constraints on the parameters of the lens and source stars, hence breaking some degeneracies in the analysis. UV-to-NIR low-resolution spectrographs like X-shooter (ESO VLT) could substantially contribute to this follow-up efforts, with magnitude limits above all microlensing events detected so far.

[1]  A. Santerne,et al.  WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star , 2015, 1506.02471.

[2]  D. Bennett,et al.  A New Nonplanetary Interpretation of the Microlensing Event OGLE-2013-BLG-0723 , 2016, 1604.06533.

[3]  A. Bhattacharya,et al.  CONFIRMATION OF THE OGLE-2005-BLG-169 PLANET SIGNATURE AND ITS CHARACTERISTICS WITH LENS–SOURCE PROPER MOTION DETECTION , 2015, 1507.08914.

[4]  R. Pfeifle,et al.  CONFIRMATION OF THE PLANETARY MICROLENSING SIGNAL AND STAR AND PLANET MASS DETERMINATIONS FOR EVENT OGLE-2005-BLG-169 , 2015, 1507.08661.

[5]  K. Ulaczyk,et al.  OGLE-2012-BLG-0563Lb: A SATURN-MASS PLANET AROUND AN M DWARF WITH THE MASS CONSTRAINED BY SUBARU AO IMAGING , 2015, 1506.08850.

[6]  J. Beaulieu,et al.  The first radial velocity measurements of a microlensing event: no evidence for the predicted binary , 2015, 1506.02019.

[7]  A. Santerne,et al.  PASTIS: Bayesian extrasolar planet validation II. Constraining exoplanet blend scenarios using spectroscopic diagnoses , 2015, 1505.02663.

[8]  David J Armstrong,et al.  One of the closest exoplanet pairs to the 3:2 mean motion resonance: K2-19b and c , 2015, Astronomy & Astrophysics.

[9]  C. Moutou,et al.  CoRoT-22 b: a validated 4.9 R⊕ exoplanet in 10-d orbit , 2014, 1408.2576.

[10]  S. Sousa ARES + MOOG: A Practical Overview of an Equivalent Width (EW) Method to Derive Stellar Parameters , 2014, 1407.5817.

[11]  T. L. Herter,et al.  Design updates and status of the fourth generation TripleSpec spectrograph , 2014, Astronomical Telescopes and Instrumentation.

[12]  R. Roy,et al.  SOPHIE velocimetry of Kepler transit candidates - XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet , 2014, 1406.6172.

[13]  J. Lillo-Box,et al.  High-resolution imaging of Kepler planet host candidates - A comprehensive comparison of different techniques , 2014, 1405.3120.

[14]  France,et al.  PASTIS: Bayesian extrasolar planet validation. I. General framework, models, and performance , 2014, 1403.6725.

[15]  C. H. Ling,et al.  MOA-2011-BLG-262Lb: A SUB-EARTH-MASS MOON ORBITING A GAS GIANT PRIMARY OR A HIGH VELOCITY PLANETARY SYSTEM IN THE GALACTIC BULGE , 2013, 1312.3951.

[16]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[17]  C. H. Ling,et al.  INTERPRETATION OF A SHORT-TERM ANOMALY IN THE GRAVITATIONAL MICROLENSING EVENT MOA-2012-BLG-486 , 2013, 1308.5762.

[18]  R. Poleski,et al.  OGLE-2002-BLG-360: from a gravitational microlensing candidate to an overlooked red transient , 2013, 1304.1694.

[19]  A. Gould,et al.  OGLE-2011-BLG-0417: A RADIAL VELOCITY TESTBED FOR MICROLENSING , 2013, 1302.0841.

[20]  C. H. Ling,et al.  CHARACTERIZING LOW-MASS BINARIES FROM OBSERVATION OF LONG-TIMESCALE CAUSTIC-CROSSING GRAVITATIONAL MICROLENSING EVENTS , 2012, 1204.2869.

[21]  J. B. Marquette,et al.  A frozen super-Earth orbiting a star at the bottom of the main sequence , 2010, 1009.5665.

[22]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[23]  K. Ulaczyk,et al.  BINARY MICROLENSING EVENT OGLE-2009-BLG-020 GIVES VERIFIABLE MASS, DISTANCE, AND ORBIT PREDICTIONS , 2011, 1101.3312.

[24]  R. de Grijs,et al.  VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way , 2009, 0912.1056.

[25]  Frantz Martinache,et al.  The performance of TripleSpec at Palomar , 2008, Astronomical Telescopes + Instrumentation.

[26]  N. Santos,et al.  New constraints from the Hα line for the temperature of the transiting planet host star OGLE‐TR‐10 , 2008 .

[27]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[28]  Hiroyuki Mito,et al.  The IRSA 2MASS all-sky point source catalog , 2008 .

[29]  J. Beaulieu,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[30]  James Howard,et al.  Mass producing an efficient NIR spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[31]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[32]  J. Lépine,et al.  Models for Interstellar Extinction in the Galaxy , 2005 .

[33]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[34]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[35]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[36]  Andrew Gould,et al.  A Natural Formalism for Microlensing , 2000, astro-ph/0001421.

[37]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[38]  M. Dworetsky,et al.  Peculiar versus Normal Phenomena in A-type and Related Stars , 1993 .

[39]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .