Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy.

[1]  K. Friend,et al.  Whole exome sequencing in foetal akinesia expands the genotype–phenotype spectrum of GBE1 glycogen storage disease mutations , 2013, Neuromuscular Disorders.

[2]  University of Huddersfield Repository Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases , 2022 .

[3]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[4]  R. Bryson-Richardson,et al.  Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy. , 2012, Human molecular genetics.

[5]  W. Swietnicki,et al.  KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. , 2012, Biochemical and biophysical research communications.

[6]  N. Laing,et al.  Clinical utility gene card for: Nemaline myopathy , 2012, European Journal of Human Genetics.

[7]  J. Dowling,et al.  Congenital Myopathies: An Update , 2012, Current Neurology and Neuroscience Reports.

[8]  G. Ravenscroft,et al.  Fetal akinesia: review of the genetics of the neuromuscular causes , 2011, Journal of Medical Genetics.

[9]  H. Morita,et al.  Exome sequencing reveals a homozygous SYT14 mutation in adult-onset, autosomal-recessive spinocerebellar ataxia with psychomotor retardation. , 2011, American journal of human genetics.

[10]  François Stricher,et al.  A graphical interface for the FoldX forcefield , 2011, Bioinform..

[11]  K. Davies,et al.  O.24 Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies , 2011, Neuromuscular Disorders.

[12]  F. Mastaglia,et al.  Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. , 2010, American journal of human genetics.

[13]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[14]  C. Bönnemann,et al.  Kelch-like homologue 9 mutation is associated with an early onset autosomal dominant distal myopathy , 2010, Brain : a journal of neurology.

[15]  K. Davies,et al.  Rescue of skeletal muscle α-actin–null mice by cardiac (fetal) α-actin , 2009, The Journal of cell biology.

[16]  A. Philippi,et al.  Robust physical methods that enrich genomic regions identical by descent for linkage studies: confirmation of a locus for osteogenesis imperfecta , 2009, BMC Genetics.

[17]  S. Clément,et al.  Dissociated flexor digitorum brevis myofiber culture system--a more mature muscle culture system. , 2007, Cell motility and the cytoskeleton.

[18]  Olga Mayans,et al.  Molecular determinants for the recruitment of the ubiquitin‐ligase MuRF‐1 onto M‐line titin , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  A. Reverter,et al.  Gene expression profiling of bovine skeletal muscle in response to and during recovery from chronic and severe undernutrition. , 2006, Journal of animal science.

[20]  K. Pelin,et al.  Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy , 2006, Human mutation.

[21]  J. Harrow,et al.  GENCODE: producing a reference annotation for ENCODE , 2006, Genome Biology.

[22]  François Stricher,et al.  The FoldX web server: an online force field , 2005, Nucleic Acids Res..

[23]  Y. Xiong,et al.  Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases , 2003, Nature Cell Biology.

[24]  Soren Prag,et al.  Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals , 2003, BMC Bioinformatics.

[25]  S. Higashijima,et al.  Migration of zebrafish spinal motor nerves into the periphery requires multiple myotome-derived cues. , 2002, Developmental biology.

[26]  L. Serrano,et al.  Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. , 2002, Journal of molecular biology.

[27]  M. Ridanpää,et al.  Mutations in the β-tropomyosin (TPM2) gene – a rare cause of nemaline myopathy , 2002, Neuromuscular Disorders.

[28]  H. Pomerance,et al.  CLINICO PATHOLOGY CONFERENCE: INFANT WITH HIGH ARCHED PALATE, BELL-SHAPED CHEST, JOINT CONTRACTURES, AND INTRAUTERINE FRACTURES , 2002 .

[29]  A A Schäffer,et al.  A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. , 2000, American journal of human genetics.

[30]  K. Pelin,et al.  Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy , 1999, Nature Genetics.

[31]  R. Dom,et al.  Fetal akinesia sequence caused by nemaline myopathy. , 1997, Neuropediatrics.

[32]  T. Ohta,et al.  The age of a neutral mutant persisting in a finite population. , 1973, Genetics.

[33]  P. Dormitzer,et al.  Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. , 2007, American journal of human genetics.

[34]  G. Abecasis,et al.  Merlin—rapid analysis of dense genetic maps using sparse gene flow trees , 2002, Nature Genetics.

[35]  M. Ridanpää,et al.  Mutations in the beta-tropomyosin (TPM2) gene--a rare cause of nemaline myopathy. , 2002, Neuromuscular disorders : NMD.

[36]  N. Laing,et al.  A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. , 1995, Nature genetics.