Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design

As the foundation of model control, robot dynamics is crucial. However, a robot is a complex multi-input–multi-output system. System noise seriously affects parameter identification results, thereby inevitably requiring us to conduct signal processing to extract useful signals from chaotic noise. In this research, the dynamic parameters were identified on the basis of the proposed multi-criteria embedded optimization design method, to obtain the optimal excitation signal and then use maximum likelihood estimation for parameter identification. Considering the movement coupling characteristics of the multi-axis, experiments were based on a two degrees-of-freedom manipulator with joint torque sensors. Simulation and experimental results showed that the proposed method can reasonably resolve the problem of mutual opposition within a single criterion and improve the identification robustness in comparison with other optimization criteria. The mean relative standard deviation was 0.04 and 0.3 lower in the identified parameters than in F1 and F3, respectively, thus signifying that noise is effectively alleviated. In addition, validation experimental curves were close to the estimation model, and the average of root mean square (RMS) is 0.038, thereby confirming the accuracy of the proposed method.

[1]  Peter C. Young,et al.  An improved instrumental variable method for industrial robot model identification , 2018 .

[2]  Shiqiang Zhu,et al.  Closed-Loop Dynamic Parameter Identification of Robot Manipulators Using Modified Fourier Series: , 2012 .

[3]  Maxime Gautier Dynamic identification of robots with power model , 1997, Proceedings of International Conference on Robotics and Automation.

[4]  Brian Armstrong,et al.  On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics , 1989, Int. J. Robotics Res..

[5]  Kyung-Jo Park,et al.  Fourier-based optimal excitation trajectories for the dynamic identification of robots , 2006, Robotica.

[6]  Jun Wu,et al.  Review: An overview of dynamic parameter identification of robots , 2010 .

[7]  Claudio Urrea,et al.  Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot , 2016, Comput. Electr. Eng..

[8]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[9]  Maxime Gautier,et al.  A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics , 2010, IEEE Transactions on Control Systems Technology.

[10]  Jens Kotlarski,et al.  Dynamics identification of kinematically redundant parallel robots using the direct search method , 2012 .

[11]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[12]  Denny Oetomo,et al.  Neuro-adaptive motion control with velocity observer in operational space formulation , 2011 .

[13]  Vicente Mata,et al.  On the Experiment Design for Direct Dynamic Parameter Identification of Parallel Robots , 2009, Adv. Robotics.

[14]  B. Heimann,et al.  Statistical Approach for Bias-free Identification of a Parallel Manipulator Affected by Large Measurement Noise , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Jingfu Jin,et al.  Parameter identification for industrial robots with a fast and robust trajectory design approach , 2015 .

[16]  Antonella Ferrara,et al.  MIMO Closed Loop Identification of an Industrial Robot , 2011, IEEE Transactions on Control Systems Technology.

[17]  Oscar Castillo,et al.  An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms , 2011, Appl. Soft Comput..

[18]  Maxime Gautier,et al.  A Generic Instrumental Variable Approach for Industrial Robot Identification , 2014, IEEE Transactions on Control Systems Technology.

[19]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[20]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[21]  Payman Moallem,et al.  Training Echo State Neural Network Using Harmony Search Algorithm , 2017 .

[22]  M. Gautier Numerical calculation of the base inertial parameters of robots , 1991, J. Field Robotics.

[23]  Basilio Bona,et al.  Identification of Industrial Robot Parameters for Advanced Model-Based Controllers Design , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Stefan Preitl,et al.  Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity , 2013, Inf. Sci..

[25]  Maxime Gautier,et al.  New criteria of exciting trajectories for robot identification , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[26]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[27]  R. G. Fenton,et al.  Application of the Weighted Least Squares Parameter Estimation Method to the Robot Calibration , 1994 .

[28]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[29]  Zhao-Hui Jiang,et al.  Neural Network Aided Dynamic Parameter Identification of Robot Manipulators , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[30]  Vicente Mata,et al.  Dynamic Parameter Identification for Parallel Manipulators , 2008 .

[31]  Gentiane Venture,et al.  Identification of humanoid robots dynamics using floating-base motion dynamics , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Wisama Khalil,et al.  Identification of the dynamic parameters of a closed loop robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[33]  Rong Xiong,et al.  Contact Force Estimation for Robot Manipulator Using Semiparametric Model and Disturbance Kalman Filter , 2018, IEEE Transactions on Industrial Electronics.

[34]  Marcelo H. Ang,et al.  Dynamic Model Identification for Industrial Robots , 2009 .

[35]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[36]  Ioan-Daniel Borlea,et al.  Model-Free Sliding Mode and Fuzzy Controllers for Reverse Osmosis Desalination Plants , 2018 .

[37]  Giuseppe Carlo Calafiore,et al.  Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation , 2001, J. Field Robotics.

[38]  Philippe Poignet,et al.  Comparison of weighted least squares and extended Kalman filtering methods for dynamic identification of robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[39]  Alexandre Janot,et al.  An instrumental variable approach for rigid industrial robots identification , 2014 .

[40]  Maxime Gautier,et al.  Global identification of joint drive gains and dynamic parameters of parallel robots , 2015 .

[41]  Hammad Nazir,et al.  A review of friction models in interacting joints for durability design , 2017, Friction.

[42]  Yacine Chitour,et al.  Dynamic Parameters Identification of an Industrial Robot With and Without Payload , 2018 .

[43]  B. Heimann,et al.  Advanced Model-Based Control of a 6-DOF Hexapod Robot: A Case Study , 2010, IEEE/ASME Transactions on Mechatronics.

[44]  Jie Zhao,et al.  A Dynamic Parameter Identification Method for Flexible Joints Based on Adaptive Control , 2018, IEEE/ASME Transactions on Mechatronics.