Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3
暂无分享,去创建一个
Keith A. Nelson | Benjamin K. Ofori-Okai | Christopher A. Werley | Prasahnt Sivarajah | K. Nelson | C. Werley | P. Sivarajah | B. Ofori-Okai
[1] Martin C. Nuss,et al. Electrooptical generation and detection of femtosecond electrical transients , 1988 .
[2] T. Feurer,et al. Spatiotemporal Coherent Control of Lattice Vibrational Waves , 2003, Science.
[3] Time-resolved coherent imaging of a THz multilayer response , 2009 .
[4] Alexander A. Serafetinides,et al. Picosecond and subpicosecond visible laser ablation of optically transparent polymers , 1998 .
[5] R. Kremer,et al. Micro structuring of LiNbO3 by using nanosecond pulsed laser ablation , 2007 .
[6] K. Nelson,et al. Direct visualization of terahertz electromagnetic waves in classic experimental geometries , 2012 .
[7] Gerard Mourou,et al. Machining of sub-micron holes using a femtosecond laser at 800 nm , 1995 .
[8] Bernard Fay,et al. Advanced optical lithography development, from UV to EUV , 2002 .
[9] Qiang Wu,et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide. , 2009, Optics express.
[10] K. Nelson,et al. High-Resolution, Low-Noise Imaging in THz Polaritonics , 2013, IEEE Transactions on Terahertz Science and Technology.
[11] M. Späth,et al. Time resolved dynamics of subpicosecond laser ablation. , 1993 .
[12] E.L. Wooten,et al. A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[13] K. Nelson,et al. Terahertz reflection response measurement using a phonon polariton wave , 2009 .
[14] K. Nelson,et al. Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining , 2006 .
[15] K. Rajurkar,et al. Investigation of Femtosecond Laser-assisted Micromachining of Lithium Niobate , 2004 .
[16] Keith A. Nelson,et al. Direct Visualization of Collective Wavepacket Dynamics , 1999 .
[17] K. Nelson,et al. Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements. , 2012, Optics express.
[18] M. Müllenborn,et al. Sub‐band‐gap laser micromachining of lithium niobate , 1995 .
[19] A Ostendorf,et al. Sub-diffraction limited structuring of solid targets with femtosecond laser pulses. , 2000, Optics express.
[20] G. Mourou,et al. Laser ablation and micromachining with ultrashort laser pulses , 1997 .
[21] E. Mazur,et al. Femtosecond laser micromachining in transparent materials , 2008 .
[22] K. Nelson,et al. Integrated diffractive terahertz elements , 2003 .
[23] R. Haglund,et al. Ultraviolet‐laser‐induced desorption of atoms, ions, and molecules from lithium niobate , 1994 .
[24] Fumiyo Yoshino,et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. , 2005, Optics express.
[25] Keith A. Nelson,et al. Impulsive stimulated Raman scattering experiments in the polariton regime , 1992 .
[27] Thomas Feurer,et al. Terahertz polariton propagation in patterned materials , 2002, Nature materials.
[28] Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics , 2002 .
[29] Qiang Wu,et al. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide. , 2010, Optics express.
[30] Michael J. Hoffmann,et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities , 2008 .
[31] K. Nelson,et al. Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts , 2009 .
[32] T. Feurer,et al. Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide , 2010 .
[33] A. Ostendorf,et al. Towards nanostructuring with femtosecond laser pulses , 2003 .
[34] M. Stuke,et al. Sub-picosecond UV laser ablation of metals , 1995 .
[35] Gary Cook,et al. Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains , 1998 .
[36] E. Mazur,et al. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser , 2003 .
[37] T. Gaylord,et al. Lithium niobate: Summary of physical properties and crystal structure , 1985 .
[38] K. Nelson,et al. Analysis of phase contrast imaging of terahertz phonon-polaritons , 2008 .
[39] Luis Arizmendi,et al. Photonic applications of lithium niobate crystals , 2004 .
[40] Qiang Wu,et al. Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO_3 , 2010 .
[41] Inspec,et al. Properties of lithium niobate , 1989 .
[42] Fredrik Laurell,et al. Wet etching of proton-exchanged lithium niobate—a novel processing technique , 1991 .
[43] J G Fujimoto,et al. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. , 2005, Optics letters.
[44] K. Nelson,et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification , 2007 .
[45] K. R. Williams,et al. Etch rates for micromachining processing , 1996 .
[46] Martin Richardson,et al. Practical uses of femtosecond laser micro-materials processing , 2003 .
[47] Alan Arai,et al. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. , 2005, Optics express.
[48] Wolfgang Schulz,et al. Laser machining by short and ultrashort pulses, state of the art , 2002 .