Parametric LQ control

The parametric linear quadratic (PLQ) control problem is considered for discrete-time stochastic systems. The control problem consists of a non-linear optimization problem in the parameters of a linear regulator. Results on global convergence and on rate of convergence are given for the linear-descent mapping method for solving the optimal regulator parameter values. Furthermore a non-linear mapping method based on the solution of a generalized discrete Riccati equation is given. The PLQ control problem is a useful extension of the optimal output feedback problem with applications to the design of low-order regulators, decentralized control and adaptive control.

[1]  T. Söderström On some algorithms for design of optimal constrained regulators , 1978 .

[2]  Tapio Westerlund,et al.  Constrained linear quadratic gaussian control with process applications , 1984, Autom..

[3]  M. Athans,et al.  On the determination of the optimal constant output feedback gains for linear multivariable systems , 1970 .

[4]  H. Sirisena,et al.  Computation of optimal output feedback gains for linear multivariable systems , 1974 .

[5]  C. Leondes,et al.  Advances in Control Systems , 1966 .

[6]  T. Yahagi A new method of optimal digital PID feedback control , 1973 .

[7]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[8]  Michael Athans,et al.  Survey of decentralized control methods for large scale systems , 1978 .

[9]  Brian D. O. Anderson,et al.  Linear Optimal Control , 1971 .

[10]  Edward J. Davison,et al.  Characterizations of decentralized fixed modes for interconnected systems , 1981, Autom..

[11]  R. G. Cochran,et al.  Output feedback stabilization by minimization of a spectral radius functional , 1978 .

[12]  Tapio Westerlund,et al.  A digital quality control system for an industrial dry process rotary cement kiln , 1981 .

[13]  Menachem Sidar,et al.  Optimal instantaneous output-feedback controllers for linear stochastic systems , 1974 .

[14]  H. Horisberger,et al.  Solution of the optimal constant output feedback problem by conjugate gradients , 1974 .

[15]  P. Dorato,et al.  Optimal linear regulators: The discrete-time case , 1971 .

[16]  C. Berger An algorithm for designing suboptimal dynamic controllers , 1974 .

[17]  J. Ackermann Parameter space design of robust control systems , 1980 .

[18]  John O'reilly Optimal instantaneous output-feedback controllers for discrete-time linear systems with inaccessible state , 1978 .