Parallel algorithms for nonlinear time–space fractional parabolic PDEs

Abstract In this paper, we develop a time stepping scheme for solving nonlinear time–space fractional partial differential equations (PDEs). In space, we use the matrix transfer technique to discretize the PDEs and obtain a system of nonlinear time-fractional differential equations. The developed scheme is similar to the Crank–Nicholson scheme for integer order PDEs and are shown to be of order 1 + α in time where α is the order of the time derivative described in the Caputo sense. The solution of the PDE at any point i in the t-stencil depends not only on the solution at the point i − 1 but on all previous solutions (memory effect). Thus, the implementation of schemes for such fractional PDEs, for long time interval, can be time consuming. This is basically due to the computation and re-computation of the history term at each time step. We lessen this computational time by implementing three parallel versions of the algorithm. The shared memory systems (OpenMP) and the distributed memory systems (MPI) are used for implementing the parallel algorithms. A third parallel version uses both the shared and distributed memory systems (Hybrid version). The advantages of the parallel algorithms over the sequential algorithm are discussed. The merits and demerits of each parallel versions of the algorithm over the others are examined. Numerical simulations are performed to support our theoretical observations.

[1]  M. Caputo,et al.  Experimental and theoretical memory diffusion of water in sand , 2003 .

[2]  Yu-xin Zhang,et al.  New numerical methods for the Riesz space fractional partial differential equations , 2012, Comput. Math. Appl..

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  Fawang Liu,et al.  Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation , 2011, Numerical Algorithms.

[5]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[6]  N. Ford,et al.  Numerical Solution of the Bagley-Torvik Equation , 2002, BIT Numerical Mathematics.

[7]  Jan S. Hesthaven,et al.  A parareal method for time-fractional differential equations , 2015, J. Comput. Phys..

[8]  Changpin Li,et al.  Finite difference methods with non-uniform meshes for nonlinear fractional differential equations , 2016, J. Comput. Phys..

[9]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[10]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[11]  Tao Zhou,et al.  Fast parareal iterations for fractional diffusion equations , 2017, J. Comput. Phys..

[12]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[13]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[14]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[15]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[16]  Jan S. Hesthaven,et al.  Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations , 2013, SIAM J. Numer. Anal..

[17]  Tao Zhou,et al.  Parareal algorithms with local time-integrators for time fractional differential equations , 2018, J. Comput. Phys..

[18]  Kai Diethelm,et al.  An efficient parallel algorithm for the numerical solution of fractional differential equations , 2011 .

[19]  George E. Karniadakis,et al.  Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..

[20]  Hong Wang,et al.  A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation , 2017, J. Comput. Phys..

[21]  A. Cloot,et al.  A generalised groundwater flow equation using the concept of non-integer order derivatives , 2007 .

[22]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[23]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[24]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[25]  Changpin Li,et al.  The finite difference method for Caputo-type parabolic equation with fractional Laplacian: more than one space dimension , 2018, Int. J. Comput. Math..

[26]  T. Hashida,et al.  MATHEMATICAL MODELING OF ANOMALOUS DIFFUSION IN POROUS MEDIA , 2011 .

[27]  Monica Moroni,et al.  Flux in Porous Media with Memory: Models and Experiments , 2010 .

[28]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[29]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[30]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[31]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[32]  Mohsen Zayernouri,et al.  Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system , 2016, J. Comput. Phys..

[33]  Fawang Liu,et al.  Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..

[34]  George E. Karniadakis,et al.  Fractional spectral collocation methods for linear and nonlinear variable order FPDEs , 2015, J. Comput. Phys..

[35]  Abdul-Qayyum M. Khaliq,et al.  Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative , 2017, J. Comput. Phys..

[36]  Roberto Garrappa,et al.  Trapezoidal methods for fractional differential equations: Theoretical and computational aspects , 2015, Math. Comput. Simul..

[37]  Kassem Mustapha,et al.  A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[38]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[39]  Abdul-Qayyum M. Khaliq,et al.  Linearly implicit predictor-corrector methods for space-fractional reaction-diffusion equations with non-smooth initial data , 2018, Comput. Math. Appl..

[40]  Jan S. Hesthaven,et al.  Stable multi-domain spectral penalty methods for fractional partial differential equations , 2014, J. Comput. Phys..