Can a Hencky-Type Model Predict the Mechanical Behaviour of Pantographic Lattices?

Current research in metamaterials design is pushing to fill the gap between mathematical modeling and technological applications. To meet these requirements, predictive and computationally effective numerical tools need to be conceived and applied. In this paper we compare the performances of a discrete model already presented in [1], strongly influenced by Hencky approach [2], versus some interesting experiments on pantographic structures built using the 3D printing technology. The interest in these structures resides in the exotic behavior that they have already shown, see [3, 4], and their study seems promising. In this work, after a brief presentation of the discrete model, we discuss the results of three experiments and compare them with the corresponding predictions obtained by the numerical simulations. An in-depth discussion of the numerical results reveals the robustness of the numerical model but also clearly indicates which are the focal points that strongly influence the accuracy of the numerical simulation.

[1]  Giuseppe Piccardo,et al.  A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes , 2014 .

[2]  Tomasz Lekszycki,et al.  Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients , 2015 .

[3]  Emilio Turco,et al.  Numerical sensitivity analysis of corrosion detection† , 2017 .

[4]  E. Turco,et al.  FREQUENCY SHIFTS INDUCED BY LARGE DEFORMATIONS IN PLANAR PANTOGRAPHIC CONTINUA , 2015 .

[5]  Emilio Turco,et al.  A numerical study on the solution of the Cauchy problem in elasticity , 2009 .

[6]  E. Turco,et al.  Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations , 2016 .

[7]  Emilio Turco,et al.  Performance of a high‐continuity finite element in three‐dimensional elasticity , 2010 .

[8]  Leopoldo Greco,et al.  An isogeometric implicit G1 mixed finite element for Kirchhoff space rods , 2016 .

[9]  Andrea Braides,et al.  Asymptotic analysis of Lennard-Jones systems beyond the nearest-neighbour setting: A one-dimensional prototypical case , 2016 .

[10]  Flavio Stochino,et al.  Constitutive models for strongly curved beams in the frame of isogeometric analysis , 2016 .

[11]  L. Placidi,et al.  Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity , 2017 .

[12]  Francesco dell’Isola,et al.  Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution , 2016 .

[13]  Dionisio Del Vescovo,et al.  Dynamic problems for metamaterials: Review of existing models and ideas for further research , 2014 .

[14]  M. Pulvirenti,et al.  Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials , 2015, 1504.08015.

[15]  Alessandro Della Corte,et al.  Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof , 2015 .

[16]  Francesco dell’Isola,et al.  Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence , 2016 .

[17]  Flavio Stochino,et al.  Sardinia radio telescope finite element model updating by means of photogrammetric measurements , 2017 .

[18]  Alfio Grillo,et al.  Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage , 2014 .

[19]  Giuseppe Rosi,et al.  Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces , 2015 .

[20]  Francesco dell’Isola,et al.  Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies , 2017 .

[21]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[22]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[23]  M. Cuomo,et al.  Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres , 2016 .

[24]  Victor A. Eremeyev,et al.  Material symmetry group and constitutive equations of micropolar anisotropic elastic solids , 2016 .

[25]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[26]  J. Ganghoffer,et al.  Construction of micropolar continua from the asymptotic homogenization of beam lattices , 2012 .

[27]  M. Fagone,et al.  Experimental global analysis of the efficiency of carbon fiber anchors applied over CFRP strengthened bricks , 2014 .

[28]  E. Turco,et al.  Multiscale 3D mixed FEM analysis of historical masonry constructions , 2017 .

[29]  Flavio Stochino,et al.  An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams , 2016 .

[30]  Antonio Cazzani,et al.  Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches , 2016 .

[31]  Luca Placidi,et al.  A second gradient formulation for a 2D fabric sheet with inextensible fibres , 2016 .

[32]  Stefano Gabriele,et al.  Initial postbuckling behavior of thin-walled frames under mode interaction , 2013 .

[33]  Giuseppe Piccardo,et al.  A direct approach for the evaluation of the conventional modes within the GBT formulation , 2014 .

[34]  Ivan Giorgio,et al.  Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements , 2015 .

[35]  Ivan Giorgio,et al.  Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model , 2017 .

[36]  Luca Placidi,et al.  A review on 2D models for the description of pantographic fabrics , 2016 .

[37]  Francesco dell’Isola,et al.  Linear pantographic sheets: Asymptotic micro-macro models identification , 2017 .

[38]  Ivan Giorgio,et al.  Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations , 2016 .

[39]  Flavio Stochino,et al.  The Sardinia Radio Telescope: A comparison between close-range photogrammetry and finite element models , 2017 .

[40]  Antonio Cazzani,et al.  Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model , 2016 .

[41]  Flavio Stochino,et al.  On the whole spectrum of Timoshenko beams. Part II: further applications , 2016, Zeitschrift für angewandte Mathematik und Physik.

[42]  Francesco dell’Isola,et al.  Pattern formation in the three-dimensional deformations of fibered sheets , 2015 .

[43]  N. Rizzi,et al.  A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis , 2016 .

[44]  Emilio Turco Identification of Axial Forces on Statically Indeterminate Pin-Jointed Trusses by a Nondestructive Mechanical Test , 2013 .

[45]  Emilio Turco,et al.  Evaluating the volume of a hidden inclusion in an elastic body , 2007 .

[46]  Emilio Turco,et al.  Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields , 2016 .

[47]  Leopoldo Greco,et al.  Wave propagation in pantographic 2D lattices with internal discontinuities , 2014, 1412.3926.

[48]  A. Morassi,et al.  Reconstructing blockages in a symmetric duct via quasi-isospectral horn operators , 2016 .

[49]  N. Rizzi,et al.  A 1D Nonlinear TWB model accounting for in plane cross-section deformation , 2016 .

[50]  E. Turco,et al.  Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence , 2016 .

[51]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[52]  A. Misra,et al.  Granular micromechanics based micromorphic model predicts frequency band gaps , 2015, Continuum Mechanics and Thermodynamics.

[53]  Francesco dell’Isola,et al.  Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response , 2015 .

[54]  Emilio Turco,et al.  Computing Volume Bounds of Inclusions by Eit Measurements , 2007, J. Sci. Comput..

[55]  N. Olhoff,et al.  Modelling and identification of viscoelastic properties of vibrating sandwich beams , 1992 .

[56]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[57]  Emilio Turco,et al.  Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives , 2017 .

[58]  Ivan Giorgio,et al.  A micro‐structural model for dissipation phenomena in the concrete , 2015 .

[59]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[60]  Francesco dell’Isola,et al.  Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching , 2015 .

[61]  Ugo Andreaus,et al.  Soft-impact dynamics of deformable bodies , 2013 .

[62]  Francesco dell’Isola,et al.  Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models , 2016 .

[63]  Flavio Stochino,et al.  On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation , 2016 .

[64]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[65]  N. Rizzi,et al.  A 1D higher gradient model derived from Koiter’s shell theory , 2016 .

[66]  Francesco dell’Isola,et al.  Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence , 2015 .

[67]  Tomasz Lekszycki,et al.  On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets , 2016 .

[68]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .

[69]  F. dell’Isola,et al.  Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  Ugo Andreaus,et al.  Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation , 2016 .