Targeting realistic geometry in Tokamak code Gysela
暂无分享,去创建一个
Virginie Grandgirard | Guillaume Latu | Michel Mehrenberger | Nicolas Bouzat | Camilla Bressan | V. Grandgirard | M. Mehrenberger | G. Latu | N. Bouzat | C. Bressan
[1] A. Mock. Subgridding Scheme for FDTD in Cylindrical Coordinates , 2011 .
[2] D. Eisen. On the numerical solution of $$u_t = u_{rr} + \frac{2}{r}u_r $$ , 1967 .
[3] Wolfgang Hackbusch,et al. Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .
[4] Michel Mehrenberger,et al. Guiding center simulations on curvilinear grids , 2016 .
[5] Ming-Chih Lai,et al. A simple compact fourth-order Poisson solver on polar geometry , 2002 .
[6] E. Süli,et al. Analysis of finite difference schemes : for linear partial differential equations with generalized solutions , 2014 .
[7] Guillaume Latu,et al. Scalable Quasineutral Solver for Gyrokinetic Simulation , 2011, PPAM.
[8] Ahmed Ratnani,et al. Solving the Vlasov equation in complex geometries , 2011 .
[9] T. Colonius,et al. Numerical Treatment of Polar Coordinate Singularities , 2000 .
[10] M. Mehrenberger,et al. The semi-Lagrangian method on curvilinear grids , 2016 .
[11] C. Gimblett,et al. On the '11/2-D' evolution of tokamak plasmas in the case of large aspect ratio , 1992 .
[12] Virginie Grandgirard,et al. Gyrokinetic Semi-lagrangian Parallel Simulation Using a Hybrid OpenMP/MPI Programming , 2007, PVM/MPI.
[13] D. Esteve,et al. A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations , 2016, Comput. Phys. Commun..
[14] Laurent Villard,et al. A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..
[15] X. Garbet,et al. The role of plasma elongation on the linear damping of zonal flows , 2008 .
[16] V. Grandgirard,et al. Gyroaverage operator for a polar mesh , 2015 .
[17] L. Kunyansky,et al. D RA FT A Second-order Finite Difference Scheme For The Wave Equation on a Reduced Polar Grid , 2015 .
[18] M. Lai. A note on finite difference discretizations for Poisson equation on a disk , 2001 .
[19] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[20] Guillaume Latu,et al. A parallel Vlasov solver based on local cubic spline interpolation on patches , 2009, J. Comput. Phys..
[21] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .