Biomedical Applications of Geometric Functional Data Analysis

In this chapter, we describe several biomedical applications of geometric functional data analysis methods for modeling probability density functions, amplitude and phase components in functional data, and shapes of curves and surfaces. We begin by reviewing parameterization-invariant Riemannian metrics and corresponding simplifying square-root transforms for each case. These tools allow for computationally efficient implementations of statistical procedures on the appropriate representation spaces, including computation of the Karcher mean and exploration of variability via principal component analysis. We then showcase applications of these tools in multiple biomedical case studies based on various datasets including Glioblastoma Multiforme tumors, Diffusion Tensor Magnetic Resonance Image-based white matter tracts and fractional anisotropy functions, electrocardiogram signals, endometrial tissue surfaces and subcortical surfaces in the brain.

[1]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[2]  Ralf Bousseljot,et al.  Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet , 2009 .

[3]  R J Sokol,et al.  New evidence for neurobehavioral effects of in utero cocaine exposure. , 1996, The Journal of pediatrics.

[4]  Hamid Laga,et al.  Numerical Inversion of SRNF Maps for Elastic Shape Analysis of Genus-Zero Surfaces , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  R. Kass,et al.  Geometrical Foundations of Asymptotic Inference , 1997 .

[6]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[7]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[8]  Anuj Srivastava,et al.  Parameterization-Invariant Shape Comparisons of Anatomical Surfaces , 2011, IEEE Transactions on Medical Imaging.

[9]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[10]  Adrien Bartoli,et al.  Contour-Based TVUS-MR Image Registration for Mapping Small Endometrial Implants , 2013, Abdominal Imaging.

[11]  Martin J. McKeown,et al.  Morphological alterations in the caudate, putamen, pallidum, and thalamus in Parkinson's disease , 2015, Front. Neurosci..

[12]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  H. Le,et al.  Locating Fréchet means with application to shape spaces , 2001, Advances in Applied Probability.

[14]  N. Just,et al.  Improving tumour heterogeneity MRI assessment with histograms , 2014, British Journal of Cancer.

[15]  Anuj Srivastava,et al.  Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields , 2012, ECCV.

[16]  Anuj Srivastava,et al.  Statistical analysis of manual segmentations of structures in medical images , 2013, Comput. Vis. Image Underst..

[17]  Sebastian Kurtek,et al.  Statistical model for simulation of deformable elastic endometrial tissue shapes , 2016, Neurocomputing.

[18]  M. Casanova,et al.  Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey , 2016, Front. Hum. Neurosci..

[19]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[20]  S. Kurtek,et al.  DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer , 2016, NeuroImage: Clinical.

[21]  J. Jacobson,et al.  Maternal age, alcohol abuse history, and quality of parenting as moderators of the effects of prenatal alcohol exposure on 7.5-year intellectual function. , 2004, Alcoholism, clinical and experimental research.

[22]  Hamid Laga,et al.  Surface Shape Morphometry for Hippocampal Modeling in Alzheimer's Disease , 2016, 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[23]  Bilwaj Gaonkar,et al.  GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines for Glioma Segmentation , 2015, Brainles@MICCAI.

[24]  Anuj Srivastava,et al.  Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves , 2007, EMMCVPR.

[25]  Anuj Srivastava,et al.  Riemannian Analysis of Probability Density Functions with Applications in Vision , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[27]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[28]  J. S. Marron,et al.  Functional Data Analysis of Amplitude and Phase Variation , 2015, 1512.03216.

[29]  Anuj Srivastava,et al.  Elastic Shape Analysis of Cylindrical Surfaces for 3D/2D Registration in Endometrial Tissue Characterization , 2014, IEEE Transactions on Medical Imaging.

[30]  Rudi Campo,et al.  Diagnosis of endometriosis: pelvic endoscopy and imaging techniques. , 2004, Best practice & research. Clinical obstetrics & gynaecology.

[31]  Sebastian Kurtek,et al.  Radiologic image‐based statistical shape analysis of brain tumours , 2017, Journal of the Royal Statistical Society. Series C, Applied statistics.

[32]  Anuj Srivastava,et al.  Parallel Transport of Deformations in Shape Space of Elastic Surfaces , 2013, 2013 IEEE International Conference on Computer Vision.

[33]  Martin Bauer,et al.  A Numerical Framework for Sobolev Metrics on the Space of Curves , 2016, SIAM J. Imaging Sci..

[34]  Gary E. Christensen,et al.  Segmentation, alignment and statistical analysis of biosignals with application to disease classification , 2013 .

[35]  Sebastian Kurtek,et al.  Statistical Shape Model for Simulation of Realistic Endometrial Tissue , 2014, ICPRAM.

[36]  L. Younes Elastic distance between curves under the metamorphosis viewpoint , 2018, 1804.10155.

[37]  E. Holland,et al.  Glioblastoma multiforme: the terminator. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Anuj Srivastava,et al.  Statistical Modeling of Curves Using Shapes and Related Features , 2012 .

[39]  Hamid Laga,et al.  Elastic Shape Analysis of Three-Dimensional Objects , 2017, Elastic Shape Analysis of Three-Dimensional Objects.

[40]  Peter F. Neher,et al.  The challenge of mapping the human connectome based on diffusion tractography , 2017, Nature Communications.

[41]  Daniel S. Reich,et al.  Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis , 2011, NeuroImage.

[42]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[43]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[44]  S. Kurtek A Geometric Approach to Pairwise Bayesian Alignment of Functional Data Using Importance Sampling , 2015, 1505.06954.

[45]  Sebastian Kurtek,et al.  Simplifying Transforms for General Elastic Metrics on the Space of Plane Curves , 2018, SIAM J. Imaging Sci..

[46]  Michael I. Miller,et al.  Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape Discrimination in Dementia of the Alzheimer type , 2007, IEEE Transactions on Medical Imaging.

[47]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[48]  Daniel T. Robinson,et al.  Functional data analysis and partial shape matching in the square root velocity framework , 2012 .

[49]  Patrick E. McSharry,et al.  Advanced Methods And Tools for ECG Data Analysis , 2006 .

[50]  L. Vermeulen,et al.  Cancer heterogeneity—a multifaceted view , 2013, EMBO reports.

[51]  Anuj Srivastava,et al.  Functional and Shape Data Analysis , 2016 .