Collision‐induced dissociation of Fe+n (n=2–10) with Xe: Ionic and neutral iron binding energies

Cross sections for collision‐induced dissociation (CID) of Fe+n with Xe, 2≤n≤10, are presented. Experiments were performed on a newly constructed guided ion beam mass spectrometer, the design and capabilities of which are described in detail. The single mechanism for dissociation of iron cluster ions is sequential loss of iron atoms with increasing collision energies. There is no evidence for fission to molecular neutral products. The cross section threshold energy dependences are analyzed to give the bond dissociation energies (BDEs), D0(Fe+n−1–Fe). Data analysis employs an empirical model that incorporates RRKM theory to account for inefficient dissociation on the time scale of the experiment. Results show that Fe+6 has the strongest BDE, D0(Fe+5–Fe) =3.44±0.18 eV, while Fe+3 is the most weakly bound, D0(Fe+2–Fe) =1.64±0.15 eV. Neutral cluster BDEs are derived from ionic binding energies and known ionization potentials. Branching ratios and other cross section features are also discussed with respect to...

[1]  Kopin Liu,et al.  Metastable decay of photoionized niobium clusters: Clusters within a cluster? , 1988 .

[2]  P. Armentrout,et al.  Collision-induced dissociation of Fe2+ , 1988 .

[3]  H. Tatewaki,et al.  The band structure of small iron clusters from Fe1 to Fe6 , 1988 .

[4]  M. R. Zakin,et al.  Dependence of metal cluster reaction kinetics on charge state. II. Chemisorption of hydrogen by neutral and positively charged iron clusters , 1988 .

[5]  G. C. Nieman,et al.  Chemical probes of metal cluster structure: Reactions of iron clusters with hydrogen, ammonia, and water , 1988 .

[6]  H. Tatewaki,et al.  The ground, excited, and negatively ionized states of Fe2 , 1988 .

[7]  Peter R. Taylor,et al.  Theoretical study of the electron affinities of Cu, Cu2, and Cu3 , 1988 .

[8]  M. Jarrold,et al.  A detailed study of the reactions between size selected aluminum cluster ions, Al+n (n=3–26), and oxygen , 1987 .

[9]  P. Armentrout,et al.  Reaction of silicon ion (2P) with silane (SiH4, SiD4). Heats of formation of SiHn, SiHn+ (n = 1, 2, 3), and Si2Hn+ (n = 0, 1, 2, 3). Remarkable isotope exchange reaction involving four-hydrogen shifts , 1987 .

[10]  R. Hettich,et al.  Spectroscopic and thermodynamic investigations of transition-metal cluster ions in the gas phase photodissociation of MFe+ , 1987 .

[11]  M. Jarrold,et al.  Collision induced dissociation of metal cluster ions: Bare aluminum clusters, Al+n (n=3–26) , 1987 .

[12]  R. Levine,et al.  Molecular Reaction Dynamics and Chemical Reactivity , 1987 .

[13]  S. Lias,et al.  Structure/Reactivity and Thermochemistry of Ions , 1987 .

[14]  M. Morse Clusters of transition-metal atoms , 1986 .

[15]  P. Armentrout,et al.  Collision-induced dissociation of vanadium monoxide ion , 1986 .

[16]  P. Armentrout,et al.  A continuous source for production of cold, mass-selected transition metal-cluster ions , 1986 .

[17]  S. C. O'brien,et al.  Supersonic cluster beams of III–V semiconductors: GaxAsy , 1986 .

[18]  R. Smalley,et al.  Metal cluster ion photofragmentation , 1986 .

[19]  Robert F. Curl,et al.  Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot , 1986 .

[20]  W. C. Lineberger,et al.  Methylene: A study of the X̃ 3B1 and ã 1A1 states by photoelectron spectroscopy of CH−2 and CD−2 , 1985 .

[21]  S. C. O'brien,et al.  Surface reactions of metal clusters I: The fast flow cluster reactor , 1985 .

[22]  R. Smalley,et al.  Surface reactions of metal clusters. II. Reactivity surveys with D2, N2, and CO , 1985 .

[23]  P. Armentrout,et al.  Translational energy dependence of Ar++XY→ArX++Y (XY=H2,D2,HD) from thermal to 30 eV c.m. , 1985 .

[24]  Freeman,et al.  Photofragmentation of Mass-Resolved Si2-12+ clusters. , 1985, Physical review letters.

[25]  E. K. Parks,et al.  Gas phase reactions of iron clusters with hydrogen. I. Kinetics , 1985 .

[26]  H. Esser,et al.  European immigration policy: Federal Republic of Germany , 1985 .

[27]  Myung-Hwan Whangbo,et al.  Orbital Interactions in Chemistry , 1985 .

[28]  Keith H. Johnson,et al.  Photoionization spectra and electronic structure of small iron clusters , 1984 .

[29]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[30]  P. Armentrout,et al.  Transition-metal cluster chemistry: reactions of Mn2+ with O2 , 1984 .

[31]  P. Armentrout,et al.  Metal cluster ions: the bond energy of diatomic manganese(1+) , 1983 .

[32]  D. E. Powers,et al.  Supersonic copper clusters , 1983 .

[33]  T. I. Morrison,et al.  Extended-x-ray-absorption-fine-structure study of small Fe molecules isolated in solid neon , 1982 .

[34]  J. English,et al.  Laser excitation spectra and lifetimes of Pb2 and Sn2 produced by YAG laser vaporization , 1982 .

[35]  D. E. Powers,et al.  Laser production of supersonic metal cluster beams , 1981 .

[36]  D. Dilella,et al.  Di-iron and nickeliron , 1980 .

[37]  R. Marx,et al.  Energy disposal in thermal‐energy charge transfer reactions determined by kinetic energy measurements of product ions: Ne++O2→O++O+Ne and Ar++O2→O2++Ar , 1979 .

[38]  M. Bowers,et al.  THEORY OF TRANSLATIONALLY DRIVEN REACTIONS , 1979 .

[39]  E. K. Parks,et al.  Collision‐induced ion‐pair formation of the thallium halides TlF and Tl2F2 , 1977 .

[40]  J. Toennies,et al.  Theoretical studies of highly expanded free jets: Influence of quantum effects and a realistic intermolecular potential , 1977 .

[41]  S. Bauer,et al.  Homogeneous nucleation in metal vapors. 2. Dependence of the heat of condensation on cluster size , 1977 .

[42]  J. Rutherford,et al.  Ion–neutral reactions of Al+ with N2, O2, and N2O , 1976 .

[43]  A. Anderson Structures, binding energies, and charge distributions for two to six atom Ti, Cr, Fe, and Ni clusters and their relationship to nucleation and cluster catalysis , 1976 .

[44]  J. Futrell,et al.  New crossed-beam apparatus for the study of ion-molecule collision processes , 1976 .

[45]  D. Gerlich,et al.  Integral cross sections for ion—molecule reactions. I. The guided beam technique , 1974 .

[46]  P. J. Robinson Unimolecular reactions , 1972 .

[47]  R. Levine,et al.  Collision-induced dissociation: A simplistic optical model analysis , 1971 .

[48]  P. Chantry Doppler Broadening in Beam Experiments , 1971 .

[49]  J. Livingood Optics of Dipole Magnets , 1969 .

[50]  Benjamin Bederson,et al.  Advances in atomic and molecular physics , 1965 .

[51]  W. Maier Dissociative Ionization of N2 and N2O by Rare‐Gas Ion Impact , 1964 .

[52]  H. E. Carr,et al.  Electrostatic Quadrupole Lens Pair for Mass Spectrometers , 1962 .

[53]  N. R. Daly Scintillation Type Mass Spectrometer Ion Detector , 1960 .

[54]  C. Kittel Introduction to solid state physics , 1954 .